Auswerten
\frac{2\left(2-a\right)\left(a+1\right)}{a+2}
Erweitern
-\frac{2\left(a^{2}-a-2\right)}{a+2}
Teilen
In die Zwischenablage kopiert
\frac{\frac{-a+2}{a-1}\times \frac{2a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a^{2}-1}}
Faktorisieren Sie die Ausdrücke, die noch nicht in \frac{2a^{2}-4a}{a^{2}-4} faktorisiert sind.
\frac{\frac{-a+2}{a-1}\times \frac{2a}{a+2}}{\frac{a}{a^{2}-1}}
Heben Sie a-2 sowohl im Zähler als auch im Nenner auf.
\frac{\frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)}}{\frac{a}{a^{2}-1}}
Multiplizieren Sie \frac{-a+2}{a-1} mit \frac{2a}{a+2}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{\left(-a+2\right)\times 2a\left(a^{2}-1\right)}{\left(a-1\right)\left(a+2\right)a}
Dividieren Sie \frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)} durch \frac{a}{a^{2}-1}, indem Sie \frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)} mit dem Kehrwert von \frac{a}{a^{2}-1} multiplizieren.
\frac{2\left(2-a\right)\left(a^{2}-1\right)}{\left(a-1\right)\left(a+2\right)}
Heben Sie a sowohl im Zähler als auch im Nenner auf.
\frac{2\left(a-1\right)\left(a+1\right)\left(-a+2\right)}{\left(a-1\right)\left(a+2\right)}
Faktorisieren Sie die Ausdrücke, die noch nicht faktorisiert sind.
\frac{2\left(a+1\right)\left(-a+2\right)}{a+2}
Heben Sie a-1 sowohl im Zähler als auch im Nenner auf.
\frac{-2a^{2}+2a+4}{a+2}
Erweitern Sie den Ausdruck.
\frac{\frac{-a+2}{a-1}\times \frac{2a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}}{\frac{a}{a^{2}-1}}
Faktorisieren Sie die Ausdrücke, die noch nicht in \frac{2a^{2}-4a}{a^{2}-4} faktorisiert sind.
\frac{\frac{-a+2}{a-1}\times \frac{2a}{a+2}}{\frac{a}{a^{2}-1}}
Heben Sie a-2 sowohl im Zähler als auch im Nenner auf.
\frac{\frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)}}{\frac{a}{a^{2}-1}}
Multiplizieren Sie \frac{-a+2}{a-1} mit \frac{2a}{a+2}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{\left(-a+2\right)\times 2a\left(a^{2}-1\right)}{\left(a-1\right)\left(a+2\right)a}
Dividieren Sie \frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)} durch \frac{a}{a^{2}-1}, indem Sie \frac{\left(-a+2\right)\times 2a}{\left(a-1\right)\left(a+2\right)} mit dem Kehrwert von \frac{a}{a^{2}-1} multiplizieren.
\frac{2\left(2-a\right)\left(a^{2}-1\right)}{\left(a-1\right)\left(a+2\right)}
Heben Sie a sowohl im Zähler als auch im Nenner auf.
\frac{2\left(a-1\right)\left(a+1\right)\left(-a+2\right)}{\left(a-1\right)\left(a+2\right)}
Faktorisieren Sie die Ausdrücke, die noch nicht faktorisiert sind.
\frac{2\left(a+1\right)\left(-a+2\right)}{a+2}
Heben Sie a-1 sowohl im Zähler als auch im Nenner auf.
\frac{-2a^{2}+2a+4}{a+2}
Erweitern Sie den Ausdruck.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}