Auswerten
\frac{x}{y}
Erweitern
\frac{x}{y}
Teilen
In die Zwischenablage kopiert
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)}\times \frac{x-2}{4x-7}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
Multiplizieren Sie \frac{4x^{2}+x-14}{6xy-14y} mit \frac{4x^{2}}{x^{2}-4}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
Multiplizieren Sie \frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)} mit \frac{x-2}{4x-7}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x\left(x+2\right)}{\left(3x-7\right)\left(x+2\right)}}
Faktorisieren Sie die Ausdrücke, die noch nicht in \frac{2x^{2}+4x}{3x^{2}-x-14} faktorisiert sind.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x}{3x-7}}
Heben Sie x+2 sowohl im Zähler als auch im Nenner auf.
\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)\left(3x-7\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)\times 2x}
Dividieren Sie \frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} durch \frac{2x}{3x-7}, indem Sie \frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} mit dem Kehrwert von \frac{2x}{3x-7} multiplizieren.
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x^{2}+x-14\right)}{\left(4x-7\right)\left(x^{2}-4\right)\left(6xy-14y\right)}
Heben Sie 2x sowohl im Zähler als auch im Nenner auf.
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}{2y\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}
Faktorisieren Sie die Ausdrücke, die noch nicht faktorisiert sind.
\frac{x}{y}
Heben Sie 2\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right) sowohl im Zähler als auch im Nenner auf.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)}\times \frac{x-2}{4x-7}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
Multiplizieren Sie \frac{4x^{2}+x-14}{6xy-14y} mit \frac{4x^{2}}{x^{2}-4}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
Multiplizieren Sie \frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)} mit \frac{x-2}{4x-7}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x\left(x+2\right)}{\left(3x-7\right)\left(x+2\right)}}
Faktorisieren Sie die Ausdrücke, die noch nicht in \frac{2x^{2}+4x}{3x^{2}-x-14} faktorisiert sind.
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x}{3x-7}}
Heben Sie x+2 sowohl im Zähler als auch im Nenner auf.
\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)\left(3x-7\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)\times 2x}
Dividieren Sie \frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} durch \frac{2x}{3x-7}, indem Sie \frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} mit dem Kehrwert von \frac{2x}{3x-7} multiplizieren.
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x^{2}+x-14\right)}{\left(4x-7\right)\left(x^{2}-4\right)\left(6xy-14y\right)}
Heben Sie 2x sowohl im Zähler als auch im Nenner auf.
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}{2y\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}
Faktorisieren Sie die Ausdrücke, die noch nicht faktorisiert sind.
\frac{x}{y}
Heben Sie 2\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right) sowohl im Zähler als auch im Nenner auf.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}