Nach a_2 auflösen (komplexe Lösung)
\left\{\begin{matrix}a_{2}=-\frac{\alpha \cot(\alpha _{3})}{c}\text{, }&\nexists n_{3}\in \mathrm{Z}\text{ : }\alpha _{3}=\frac{\pi n_{3}}{2}\text{ and }c\neq 0\\a_{2}\in \mathrm{C}\text{, }&\left(\nexists n_{3}\in \mathrm{Z}\text{ : }\alpha _{3}=\frac{\pi n_{3}}{2}\text{ and }\alpha =0\text{ and }c=0\right)\text{ or }\left(\alpha =0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\alpha _{3}=\pi n_{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha _{3}=\pi n_{1}+\frac{\pi }{2}\right)\end{matrix}\right,
Nach c auflösen (komplexe Lösung)
\left\{\begin{matrix}c=-\frac{\alpha \cot(\alpha _{3})}{a_{2}}\text{, }&\nexists n_{3}\in \mathrm{Z}\text{ : }\alpha _{3}=\frac{\pi n_{3}}{2}\text{ and }a_{2}\neq 0\\c\in \mathrm{C}\text{, }&\left(\nexists n_{3}\in \mathrm{Z}\text{ : }\alpha _{3}=\frac{\pi n_{3}}{2}\text{ and }\alpha =0\text{ and }a_{2}=0\right)\text{ or }\left(\alpha =0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\alpha _{3}=\pi n_{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha _{3}=\pi n_{1}+\frac{\pi }{2}\right)\end{matrix}\right,
Nach a_2 auflösen
\left\{\begin{matrix}a_{2}=-\frac{\alpha \cot(\alpha _{3})}{c}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(\alpha _{3}>\frac{\pi n_{2}}{2}\text{ and }\alpha _{3}<\frac{\pi n_{2}}{2}+\frac{\pi }{2}\right)\text{ and }c\neq 0\\a_{2}\in \mathrm{R}\text{, }&\left(c=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }\alpha _{3}=\pi n_{1}\right)\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(\alpha _{3}>\pi n_{3}+\frac{\pi }{2}\text{ and }\alpha _{3}<\pi n_{3}+\frac{3\pi }{2}\right)\text{ and }\alpha =0\end{matrix}\right,
Nach c auflösen
\left\{\begin{matrix}c=-\frac{\alpha \cot(\alpha _{3})}{a_{2}}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(\alpha _{3}>\frac{\pi n_{2}}{2}\text{ and }\alpha _{3}<\frac{\pi n_{2}}{2}+\frac{\pi }{2}\right)\text{ and }a_{2}\neq 0\\c\in \mathrm{R}\text{, }&\left(a_{2}=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }\alpha _{3}=\pi n_{1}\right)\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(\alpha _{3}>\pi n_{3}+\frac{\pi }{2}\text{ and }\alpha _{3}<\pi n_{3}+\frac{3\pi }{2}\right)\text{ and }\alpha =0\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
a_{2}c\tan(-\alpha _{3})=\alpha
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
c\tan(-\alpha _{3})a_{2}=\alpha
Die Gleichung weist die Standardform auf.
\frac{c\tan(-\alpha _{3})a_{2}}{c\tan(-\alpha _{3})}=\frac{\alpha }{c\tan(-\alpha _{3})}
Dividieren Sie beide Seiten durch c\tan(-\alpha _{3}).
a_{2}=\frac{\alpha }{c\tan(-\alpha _{3})}
Division durch c\tan(-\alpha _{3}) macht die Multiplikation mit c\tan(-\alpha _{3}) rückgängig.
a_{2}=-\frac{\alpha \cot(\alpha _{3})}{c}
Dividieren Sie \alpha durch c\tan(-\alpha _{3}).
a_{2}c\tan(-\alpha _{3})=\alpha
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
a_{2}\tan(-\alpha _{3})c=\alpha
Die Gleichung weist die Standardform auf.
\frac{a_{2}\tan(-\alpha _{3})c}{a_{2}\tan(-\alpha _{3})}=\frac{\alpha }{a_{2}\tan(-\alpha _{3})}
Dividieren Sie beide Seiten durch a_{2}\tan(-\alpha _{3}).
c=\frac{\alpha }{a_{2}\tan(-\alpha _{3})}
Division durch a_{2}\tan(-\alpha _{3}) macht die Multiplikation mit a_{2}\tan(-\alpha _{3}) rückgängig.
c=-\frac{\alpha \cot(\alpha _{3})}{a_{2}}
Dividieren Sie \alpha durch a_{2}\tan(-\alpha _{3}).
a_{2}c\tan(-\alpha _{3})=\alpha
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
c\tan(-\alpha _{3})a_{2}=\alpha
Die Gleichung weist die Standardform auf.
\frac{c\tan(-\alpha _{3})a_{2}}{c\tan(-\alpha _{3})}=\frac{\alpha }{c\tan(-\alpha _{3})}
Dividieren Sie beide Seiten durch c\tan(-\alpha _{3}).
a_{2}=\frac{\alpha }{c\tan(-\alpha _{3})}
Division durch c\tan(-\alpha _{3}) macht die Multiplikation mit c\tan(-\alpha _{3}) rückgängig.
a_{2}=-\frac{\alpha \cot(\alpha _{3})}{c}
Dividieren Sie \alpha durch c\tan(-\alpha _{3}).
a_{2}c\tan(-\alpha _{3})=\alpha
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
a_{2}\tan(-\alpha _{3})c=\alpha
Die Gleichung weist die Standardform auf.
\frac{a_{2}\tan(-\alpha _{3})c}{a_{2}\tan(-\alpha _{3})}=\frac{\alpha }{a_{2}\tan(-\alpha _{3})}
Dividieren Sie beide Seiten durch a_{2}\tan(-\alpha _{3}).
c=\frac{\alpha }{a_{2}\tan(-\alpha _{3})}
Division durch a_{2}\tan(-\alpha _{3}) macht die Multiplikation mit a_{2}\tan(-\alpha _{3}) rückgängig.
c=-\frac{\alpha \cot(\alpha _{3})}{a_{2}}
Dividieren Sie \alpha durch a_{2}\tan(-\alpha _{3}).
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}