Auswerten
\frac{83}{24}\approx 3,458333333
Faktorisieren
\frac{83}{2 ^ {3} \cdot 3} = 3\frac{11}{24} = 3,4583333333333335
Teilen
In die Zwischenablage kopiert
\frac{11}{6}\times \frac{1}{4}+\frac{9}{3}
Verringern Sie den Bruch \frac{2}{8} um den niedrigsten Term, indem Sie 2 extrahieren und aufheben.
\frac{11\times 1}{6\times 4}+\frac{9}{3}
Multiplizieren Sie \frac{11}{6} mit \frac{1}{4}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{11}{24}+\frac{9}{3}
Führen Sie die Multiplikationen im Bruch \frac{11\times 1}{6\times 4} aus.
\frac{11}{24}+3
Dividieren Sie 9 durch 3, um 3 zu erhalten.
\frac{11}{24}+\frac{72}{24}
Wandelt 3 in einen Bruch \frac{72}{24} um.
\frac{11+72}{24}
Da \frac{11}{24} und \frac{72}{24} denselben Nenner haben, addieren Sie diese, indem Sie ihre Zähler addieren.
\frac{83}{24}
Addieren Sie 11 und 72, um 83 zu erhalten.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}