Auswerten
\frac{\left(4x+9\right)\left(x^{3}+12x^{2}+12x+120\right)}{8}
Erweitern
\frac{x^{4}}{2}+\frac{57x^{3}}{8}+\frac{39x^{2}}{2}+\frac{147x}{2}+135
Diagramm
Teilen
In die Zwischenablage kopiert
\left(\frac{1}{2}x^{2}+\left(\frac{1}{8}x-\frac{1}{2}\right)\left(x^{2}+4x-16\right)-\left(\frac{1}{2}x+2\right)+\left(x+3\right)^{2}\right)\left(4x+9\right)
Verwenden Sie das Distributivgesetz, um \frac{1}{4} mit \frac{1}{2}x-2 zu multiplizieren.
\left(\frac{1}{2}x^{2}+\frac{1}{8}x^{3}-4x+8-\left(\frac{1}{2}x+2\right)+\left(x+3\right)^{2}\right)\left(4x+9\right)
Verwenden Sie das Distributivgesetz, um \frac{1}{8}x-\frac{1}{2} mit x^{2}+4x-16 zu multiplizieren und gleiche Terme zusammenzufassen.
\left(\frac{1}{2}x^{2}+\frac{1}{8}x^{3}-4x+8-\frac{1}{2}x-2+\left(x+3\right)^{2}\right)\left(4x+9\right)
Um das Gegenteil von "\frac{1}{2}x+2" zu finden, suchen Sie nach dem Gegenteil jedes Terms.
\left(\frac{1}{2}x^{2}+\frac{1}{8}x^{3}-\frac{9}{2}x+8-2+\left(x+3\right)^{2}\right)\left(4x+9\right)
Kombinieren Sie -4x und -\frac{1}{2}x, um -\frac{9}{2}x zu erhalten.
\left(\frac{1}{2}x^{2}+\frac{1}{8}x^{3}-\frac{9}{2}x+6+\left(x+3\right)^{2}\right)\left(4x+9\right)
Subtrahieren Sie 2 von 8, um 6 zu erhalten.
\left(\frac{1}{2}x^{2}+\frac{1}{8}x^{3}-\frac{9}{2}x+6+x^{2}+6x+9\right)\left(4x+9\right)
\left(x+3\right)^{2} mit dem binomischen Lehrsatz "\left(a+b\right)^{2}=a^{2}+2ab+b^{2}" erweitern.
\left(\frac{3}{2}x^{2}+\frac{1}{8}x^{3}-\frac{9}{2}x+6+6x+9\right)\left(4x+9\right)
Kombinieren Sie \frac{1}{2}x^{2} und x^{2}, um \frac{3}{2}x^{2} zu erhalten.
\left(\frac{3}{2}x^{2}+\frac{1}{8}x^{3}+\frac{3}{2}x+6+9\right)\left(4x+9\right)
Kombinieren Sie -\frac{9}{2}x und 6x, um \frac{3}{2}x zu erhalten.
\left(\frac{3}{2}x^{2}+\frac{1}{8}x^{3}+\frac{3}{2}x+15\right)\left(4x+9\right)
Addieren Sie 6 und 9, um 15 zu erhalten.
\frac{57}{8}x^{3}+\frac{39}{2}x^{2}+\frac{1}{2}x^{4}+\frac{147}{2}x+135
Verwenden Sie das Distributivgesetz, um \frac{3}{2}x^{2}+\frac{1}{8}x^{3}+\frac{3}{2}x+15 mit 4x+9 zu multiplizieren und gleiche Terme zusammenzufassen.
\left(\frac{1}{2}x^{2}+\left(\frac{1}{8}x-\frac{1}{2}\right)\left(x^{2}+4x-16\right)-\left(\frac{1}{2}x+2\right)+\left(x+3\right)^{2}\right)\left(4x+9\right)
Verwenden Sie das Distributivgesetz, um \frac{1}{4} mit \frac{1}{2}x-2 zu multiplizieren.
\left(\frac{1}{2}x^{2}+\frac{1}{8}x^{3}-4x+8-\left(\frac{1}{2}x+2\right)+\left(x+3\right)^{2}\right)\left(4x+9\right)
Verwenden Sie das Distributivgesetz, um \frac{1}{8}x-\frac{1}{2} mit x^{2}+4x-16 zu multiplizieren und gleiche Terme zusammenzufassen.
\left(\frac{1}{2}x^{2}+\frac{1}{8}x^{3}-4x+8-\frac{1}{2}x-2+\left(x+3\right)^{2}\right)\left(4x+9\right)
Um das Gegenteil von "\frac{1}{2}x+2" zu finden, suchen Sie nach dem Gegenteil jedes Terms.
\left(\frac{1}{2}x^{2}+\frac{1}{8}x^{3}-\frac{9}{2}x+8-2+\left(x+3\right)^{2}\right)\left(4x+9\right)
Kombinieren Sie -4x und -\frac{1}{2}x, um -\frac{9}{2}x zu erhalten.
\left(\frac{1}{2}x^{2}+\frac{1}{8}x^{3}-\frac{9}{2}x+6+\left(x+3\right)^{2}\right)\left(4x+9\right)
Subtrahieren Sie 2 von 8, um 6 zu erhalten.
\left(\frac{1}{2}x^{2}+\frac{1}{8}x^{3}-\frac{9}{2}x+6+x^{2}+6x+9\right)\left(4x+9\right)
\left(x+3\right)^{2} mit dem binomischen Lehrsatz "\left(a+b\right)^{2}=a^{2}+2ab+b^{2}" erweitern.
\left(\frac{3}{2}x^{2}+\frac{1}{8}x^{3}-\frac{9}{2}x+6+6x+9\right)\left(4x+9\right)
Kombinieren Sie \frac{1}{2}x^{2} und x^{2}, um \frac{3}{2}x^{2} zu erhalten.
\left(\frac{3}{2}x^{2}+\frac{1}{8}x^{3}+\frac{3}{2}x+6+9\right)\left(4x+9\right)
Kombinieren Sie -\frac{9}{2}x und 6x, um \frac{3}{2}x zu erhalten.
\left(\frac{3}{2}x^{2}+\frac{1}{8}x^{3}+\frac{3}{2}x+15\right)\left(4x+9\right)
Addieren Sie 6 und 9, um 15 zu erhalten.
\frac{57}{8}x^{3}+\frac{39}{2}x^{2}+\frac{1}{2}x^{4}+\frac{147}{2}x+135
Verwenden Sie das Distributivgesetz, um \frac{3}{2}x^{2}+\frac{1}{8}x^{3}+\frac{3}{2}x+15 mit 4x+9 zu multiplizieren und gleiche Terme zusammenzufassen.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}