Spring videre til hovedindholdet
Microsoft
|
Math Solver
Løse
Praksis
Spille
Emner
Præ-Algebra
Betyde
Tilstand
Største fælles faktor
Mindst almindelige multiplum
Rækkefølgen af operationer
Fraktioner
Blandede brøker
Prime Factorization
Eksponenter
Radikaler
Algebra
Kombiner lignende udtryk
Løs for en variabel
Faktor
Ekspandere
Vurder brøker
Lineære ligninger
Kvadratiske ligninger
Uligheder
Systemer af ligninger
Matricer
Trigonometri
Forenkle
Evaluere
Grafer
Løs ligninger
Calculus
Derivater
Integraler
Grænser
Algebra-indgange
Trigonometri Indgange
Indgange til beregninger
Matrix-indgange
Løse
Praksis
Spille
Emner
Præ-Algebra
Betyde
Tilstand
Største fælles faktor
Mindst almindelige multiplum
Rækkefølgen af operationer
Fraktioner
Blandede brøker
Prime Factorization
Eksponenter
Radikaler
Algebra
Kombiner lignende udtryk
Løs for en variabel
Faktor
Ekspandere
Vurder brøker
Lineære ligninger
Kvadratiske ligninger
Uligheder
Systemer af ligninger
Matricer
Trigonometri
Forenkle
Evaluere
Grafer
Løs ligninger
Calculus
Derivater
Integraler
Grænser
Algebra-indgange
Trigonometri Indgange
Indgange til beregninger
Matrix-indgange
Grundlæggende
algebra
trigonometri
Calculus
statistik
Matricer
Tegn
Løs for x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Graf
Fremstil begge sider grafisk i 2D
Fremstil grafisk i 2D
Quiz
Trigonometry
\sin ( x ) - cos ( x ) = 0
Lignende problemer fra websøgning
Solve \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} ?
https://socratic.org/questions/58f66b0eb72cff6d065f28c0
\displaystyle{x}=\frac{\pi}{{4}}+{n}\pi Explanation: We have: \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} Which we can rearrange as follows: \displaystyle\therefore{\sin{{x}}}={\cos{{x}}} ...
I confused with trigonometry. \sin x - \cos x = 1
https://math.stackexchange.com/q/2837121
\frac{1}{\sqrt2}\sin{x}-\frac{1}{\sqrt2}\cos{x}=\frac{1}{\sqrt2} or \sin\left(x-45^{\circ}\right)=\sin45^{\circ}, which gives x-45^{\circ}=45^{\circ}+360^{\circ}k, where k is an integer ...
How do you solve \displaystyle{\sin{{2}}}{x}-{\cos{{x}}}={0} ?
https://socratic.org/questions/how-do-you-solve-sin-2x-cos-x-0
Use the important double angle identity \displaystyle{\sin{{2}}}{x}={2}{\sin{{x}}}{\cos{{x}}} to start the solving process. Explanation: \displaystyle{2}{\sin{{x}}}{\cos{{x}}}-{\cos{{x}}}={0} ...
How to solve \sin 3x - \cos x = 0
https://www.quora.com/How-do-I-solve-sin-3x-cos-x-0
\begin{align} &\ \ \sin 3x - \cos x = 0 \\ \Leftrightarrow &\ \ \sin 3x - \sin \left( \dfrac{\pi}{2}-x \right) = 0 \\ \Leftrightarrow &\ \ 2 \cos\dfrac{3x + \left( \frac{\pi}{2}-x \right)}{2} \sin\dfrac{3x - \left( \frac{\pi}{2}-x \right)}{2} = 0 \\ \Leftrightarrow &\ \ 2 \cos \dfrac{2x + \frac{\pi}{2}}{2} \sin \dfrac{4x - \frac{\pi}{2}}{2} = 0 \\ \Leftrightarrow &\ \ \dfrac{2x + \frac{\pi}{2}}{2} = \dfrac{\pi}{2} + k\pi, k \in \mathbb{Z} \text{ or } \dfrac{4x - \frac{\pi}{2}}{2} = k\pi, k \in \mathbb{Z} \\ \Leftrightarrow &\ \ x = \dfrac{\pi}{4} + k\pi, k \in \mathbb{Z} \text{ or } x = \dfrac{\pi}{8} + \dfrac{k\pi}{2}, k \in \mathbb{Z} \end{align}
Find the general solution to \sin(4x)-\cos(x)=0 [closed]
https://math.stackexchange.com/questions/1735307/find-the-general-solution-to-sin4x-cosx-0
\sin(4x)−\cos(x)=0 2\sin(2x)\cos(2x)-\cos(x)=0 4\sin(x)\cos(x)(1-2\sin^2(x))-\cos(x)=0 One possible solution is \cos(x)=0 4\sin(x)(1-2\sin^2(x))=1 8\sin^3(x)-4\sin(x)+1=0 Now, let \sin(x)=m ...
Prove that \sin x - x\cos x = 0 has only one solution in [-\frac{\pi}{2}, \frac{\pi}{2}]
https://math.stackexchange.com/q/1355080/166535
Let f(x)=\sin x-x\cos x. You have f'(x)=x\sin x. Since \sin x has the same sign as x for x\in[-\pi/2,\pi/2], we know that f'(x)\geq0 in this interval and f'(x)>0 for x\in[-\pi/2,\pi/2]\setminus\{0\} ...
Flere Elementer
Aktie
Eksemplar
Kopieret til udklipsholder
Lignende problemer
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Tilbage til toppen