Spring videre til hovedindholdet
Microsoft
|
Math Solver
Løse
Praksis
Spille
Emner
Præ-Algebra
Betyde
Tilstand
Største fælles faktor
Mindst almindelige multiplum
Rækkefølgen af operationer
Fraktioner
Blandede brøker
Prime Factorization
Eksponenter
Radikaler
Algebra
Kombiner lignende udtryk
Løs for en variabel
Faktor
Ekspandere
Vurder brøker
Lineære ligninger
Kvadratiske ligninger
Uligheder
Systemer af ligninger
Matricer
Trigonometri
Forenkle
Evaluere
Grafer
Løs ligninger
Calculus
Derivater
Integraler
Grænser
Algebra-indgange
Trigonometri Indgange
Indgange til beregninger
Matrix-indgange
Løse
Praksis
Spille
Emner
Præ-Algebra
Betyde
Tilstand
Største fælles faktor
Mindst almindelige multiplum
Rækkefølgen af operationer
Fraktioner
Blandede brøker
Prime Factorization
Eksponenter
Radikaler
Algebra
Kombiner lignende udtryk
Løs for en variabel
Faktor
Ekspandere
Vurder brøker
Lineære ligninger
Kvadratiske ligninger
Uligheder
Systemer af ligninger
Matricer
Trigonometri
Forenkle
Evaluere
Grafer
Løs ligninger
Calculus
Derivater
Integraler
Grænser
Algebra-indgange
Trigonometri Indgange
Indgange til beregninger
Matrix-indgange
Grundlæggende
algebra
trigonometri
Calculus
statistik
Matricer
Tegn
Løs for x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Graf
Fremstil begge sider grafisk i 2D
Fremstil grafisk i 2D
Quiz
Trigonometry
\sin ( x ) = \cos ( x )
Lignende problemer fra websøgning
How to solve equations like 2 \sin(x) = \cos(x)
https://math.stackexchange.com/questions/1476944/how-to-solve-equations-like-2-sinx-cosx/1476973
One way can be using tan\frac x2=t so sin x=\frac{2t}{1+t^2} and cos x=\frac{1-t^2}{1+t^2}. Here 2sin x= cos x implies t^2+4t-1=0 from wich tan \frac x2=2\pm\sqrt{5}.Hence the answer of ...
How do you show that the equation \displaystyle{1}-{\sin{{x}}}={\cos{{x}}} is not an identity?
https://socratic.org/questions/how-do-you-show-that-the-equation-1-sinx-cosx-is-not-an-identity
Bdub Nov 12, 2016 Pick a value for x like \displaystyle\frac{\pi}{{3}} and plug it in to both side to show that they don't equal each other and therefore not an identity
How do you solve \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}} ?
https://socratic.org/questions/how-do-you-solve-1-sin-x-cos-x
\displaystyle{x}={0} Explanation: \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}{\quad\text{or}\quad}{\cos{{x}}}-{\sin{{x}}}={1} . Squaring both sides we get \displaystyle{\left({\cos{{x}}}-{\sin{{x}}}\right)}^{{2}}={1}{\quad\text{or}\quad}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}-{2}{\sin{{x}}}{\cos{{x}}}={1}{\quad\text{or}\quad}{1}-{\sin{{2}}}{x}={1}{\quad\text{or}\quad}{\sin{{2}}}{x}={0}={\sin{{0}}}; ...
Trigonometric equation \sin2x=\cos x
https://math.stackexchange.com/questions/3008492/trigonometric-equation-sin2x-cos-x
As @Nicholas Stull hinted, you lost solutions by not making sure that you were not dividing by zero. As @Winther pointed out, you can avoid this error by factoring. As @Nicholas Stull pointed out, ...
Is there a deeper understanding of the derivative of sin(x) = cos(x)?
https://math.stackexchange.com/q/2454114
Apropos "deeper way": 1) f(x) = f(-x), even fct. Examples: y=x^2, y=cos(x) f'(x) = -f'(-x), chain rule, odd fct. 2) f(x)=-f(-x), odd fct. Examples: y=x^3, y=sin(x). f'(x) = f'(-x), ...
Maximum area of a rectangle inscribed in the cos(x) function
https://math.stackexchange.com/q/2212333
Equations like x= \cos x or x=\cot x generally don't have algebraic solutions. As such, we would first want to note that such an x exists (e.g., by the Intermediate Value Theorem) and then use ...
Flere Elementer
Aktie
Eksemplar
Kopieret til udklipsholder
Lignende problemer
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )
Tilbage til toppen