Neidio i'r prif gynnwys
Microsoft
|
Math Solver
Datrys
Ymarfer
Chwarae
Pynciau
Cyn-Algebra
Golygu
Modd
Ffactor Cyffredin Mwyaf
Lleiaf Cyffredin Lluosog
Urdd Gweithrediadau
Ffracsiynau
Ffracsiynau Cymysg
Prif Ffactorization
Dehonglwyr
Radicaliaid
Algebra
Cyfuno fel termau
Datrys ar gyfer Newidyn
Ffactor
Ehangu
Gwerthuso ffracsiynau
Hafaliadau llinol
Hafaliadau cwadratig
Anghydraddoldebau
Systemau Hafaliadau
Matricsau
Trigonometreg
Symleiddio
Gwerthuso
Graffiau
Datrys Hafaliadau
Calculus
Deilliadau
Integrynnau
Terfynau
Mewnbynnau algebra
Mewnbynnau trigonometreg
Mewnbynnau Calculus
Mewnbynnau Matrics
Datrys
Ymarfer
Chwarae
Pynciau
Cyn-Algebra
Golygu
Modd
Ffactor Cyffredin Mwyaf
Lleiaf Cyffredin Lluosog
Urdd Gweithrediadau
Ffracsiynau
Ffracsiynau Cymysg
Prif Ffactorization
Dehonglwyr
Radicaliaid
Algebra
Cyfuno fel termau
Datrys ar gyfer Newidyn
Ffactor
Ehangu
Gwerthuso ffracsiynau
Hafaliadau llinol
Hafaliadau cwadratig
Anghydraddoldebau
Systemau Hafaliadau
Matricsau
Trigonometreg
Symleiddio
Gwerthuso
Graffiau
Datrys Hafaliadau
Calculus
Deilliadau
Integrynnau
Terfynau
Mewnbynnau algebra
Mewnbynnau trigonometreg
Mewnbynnau Calculus
Mewnbynnau Matrics
Sylfaenol
algebra
trigonometreg
Calculus
ystadegau
matricsau
Cymeriadau
Enrhifo
5
Cwis
Limits
5 problemau tebyg i:
\lim_{ x \rightarrow 0 } 5
Problemau tebyg o chwiliad gwe
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Mwy Eitemau
Rhannu
Copi
Copïo i clipfwrdd
Problemau tebyg
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Yn ôl i'r brig