Neidio i'r prif gynnwys
Microsoft
|
Math Solver
Datrys
Ymarfer
Chwarae
Pynciau
Cyn-Algebra
Golygu
Modd
Ffactor Cyffredin Mwyaf
Lleiaf Cyffredin Lluosog
Urdd Gweithrediadau
Ffracsiynau
Ffracsiynau Cymysg
Prif Ffactorization
Dehonglwyr
Radicaliaid
Algebra
Cyfuno fel termau
Datrys ar gyfer Newidyn
Ffactor
Ehangu
Gwerthuso ffracsiynau
Hafaliadau llinol
Hafaliadau cwadratig
Anghydraddoldebau
Systemau Hafaliadau
Matricsau
Trigonometreg
Symleiddio
Gwerthuso
Graffiau
Datrys Hafaliadau
Calculus
Deilliadau
Integrynnau
Terfynau
Mewnbynnau algebra
Mewnbynnau trigonometreg
Mewnbynnau Calculus
Mewnbynnau Matrics
Datrys
Ymarfer
Chwarae
Pynciau
Cyn-Algebra
Golygu
Modd
Ffactor Cyffredin Mwyaf
Lleiaf Cyffredin Lluosog
Urdd Gweithrediadau
Ffracsiynau
Ffracsiynau Cymysg
Prif Ffactorization
Dehonglwyr
Radicaliaid
Algebra
Cyfuno fel termau
Datrys ar gyfer Newidyn
Ffactor
Ehangu
Gwerthuso ffracsiynau
Hafaliadau llinol
Hafaliadau cwadratig
Anghydraddoldebau
Systemau Hafaliadau
Matricsau
Trigonometreg
Symleiddio
Gwerthuso
Graffiau
Datrys Hafaliadau
Calculus
Deilliadau
Integrynnau
Terfynau
Mewnbynnau algebra
Mewnbynnau trigonometreg
Mewnbynnau Calculus
Mewnbynnau Matrics
Sylfaenol
algebra
trigonometreg
Calculus
ystadegau
matricsau
Cymeriadau
Enrhifo
\text{Divergent}
Cwis
Limits
5 problemau tebyg i:
\lim_{ x \rightarrow 0 } \frac{2}{x}
Problemau tebyg o chwiliad gwe
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Mwy Eitemau
Rhannu
Copi
Copïo i clipfwrdd
Problemau tebyg
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Yn ôl i'r brig