Datrys ar gyfer x
\left\{\begin{matrix}x=-\frac{e^{y}-z-zy^{2}}{y\left(y^{2}+1\right)}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&z=1\text{ and }y=0\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
z\left(y^{2}+1\right)=xy\left(y^{2}+1\right)+e^{y}
Lluoswch ddwy ochr yr hafaliad â y^{2}+1.
zy^{2}+z=xy\left(y^{2}+1\right)+e^{y}
Defnyddio’r briodwedd ddosbarthu i luosi z â y^{2}+1.
zy^{2}+z=xy^{3}+xy+e^{y}
Defnyddio’r briodwedd ddosbarthu i luosi xy â y^{2}+1.
xy^{3}+xy+e^{y}=zy^{2}+z
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
xy^{3}+xy=zy^{2}+z-e^{y}
Tynnu e^{y} o'r ddwy ochr.
\left(y^{3}+y\right)x=zy^{2}+z-e^{y}
Cyfuno pob term sy'n cynnwys x.
\frac{\left(y^{3}+y\right)x}{y^{3}+y}=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
Rhannu’r ddwy ochr â y^{3}+y.
x=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
Mae rhannu â y^{3}+y yn dad-wneud lluosi â y^{3}+y.
x=\frac{zy^{2}+z-e^{y}}{y\left(y^{2}+1\right)}
Rhannwch zy^{2}+z-e^{y} â y^{3}+y.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}