Datrys ar gyfer L
L=8\times \left(\frac{y}{\pi }\right)^{2}
y\geq 0
Datrys ar gyfer L (complex solution)
L=8\times \left(\frac{y}{\pi }\right)^{2}
|\frac{arg(y^{2})}{2}-arg(y)|<\pi \text{ or }y=0
Datrys ar gyfer y (complex solution)
y=\frac{\pi \sqrt{2L}}{4}
Datrys ar gyfer y
y=\frac{\pi \sqrt{2L}}{4}
L\geq 0
Graff
Rhannu
Copïo i clipfwrdd
2\pi \sqrt{\frac{L}{32}}=y
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{2\pi \sqrt{\frac{1}{32}L}}{2\pi }=\frac{y}{2\pi }
Rhannu’r ddwy ochr â 2\pi .
\sqrt{\frac{1}{32}L}=\frac{y}{2\pi }
Mae rhannu â 2\pi yn dad-wneud lluosi â 2\pi .
\frac{1}{32}L=\frac{y^{2}}{4\pi ^{2}}
Sgwariwch ddwy ochr yr hafaliad.
\frac{\frac{1}{32}L}{\frac{1}{32}}=\frac{y^{2}}{\frac{1}{32}\times 4\pi ^{2}}
Lluosi’r ddwy ochr â 32.
L=\frac{y^{2}}{\frac{1}{32}\times 4\pi ^{2}}
Mae rhannu â \frac{1}{32} yn dad-wneud lluosi â \frac{1}{32}.
L=\frac{8y^{2}}{\pi ^{2}}
Rhannwch \frac{y^{2}}{4\pi ^{2}} â \frac{1}{32} drwy luosi \frac{y^{2}}{4\pi ^{2}} â chilydd \frac{1}{32}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}