Datrys ar gyfer A
A=\frac{y}{e^{kx}}+y
Datrys ar gyfer k
\left\{\begin{matrix}k=-\frac{\ln(\frac{A}{y}-1)}{x}\text{, }&\left(x\neq 0\text{ and }y>A\text{ and }y<0\right)\text{ or }\left(x\neq 0\text{ and }y<A\text{ and }y>0\right)\\k\in \mathrm{R}\text{, }&\left(y=0\text{ and }A=0\right)\text{ or }\left(A=2y\text{ and }x=0\text{ and }y\neq 0\right)\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
\frac{A}{1+e^{\left(-k\right)x}}=y
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{A}{e^{-kx}+1}=y
Aildrefnu'r termau.
\frac{1}{\frac{1}{e^{kx}}+1}A=y
Mae'r hafaliad yn y ffurf safonol.
\frac{\frac{1}{\frac{1}{e^{kx}}+1}A\left(\frac{1}{e^{kx}}+1\right)}{1}=\frac{y\left(\frac{1}{e^{kx}}+1\right)}{1}
Rhannu’r ddwy ochr â \left(e^{-kx}+1\right)^{-1}.
A=\frac{y\left(\frac{1}{e^{kx}}+1\right)}{1}
Mae rhannu â \left(e^{-kx}+1\right)^{-1} yn dad-wneud lluosi â \left(e^{-kx}+1\right)^{-1}.
A=\frac{y}{e^{kx}}+y
Rhannwch y â \left(e^{-kx}+1\right)^{-1}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}