Datrys ar gyfer x
x=\frac{\left(y+1\right)^{2}+4}{2}
y+1\geq 0
Datrys ar gyfer x (complex solution)
x=\frac{\left(y+1\right)^{2}+4}{2}
y=-1\text{ or }arg(y+1)<\pi
Datrys ar gyfer y (complex solution)
y=\sqrt{2\left(x-2\right)}-1
Datrys ar gyfer y
y=\sqrt{2\left(x-2\right)}-1
x\geq 2
Graff
Rhannu
Copïo i clipfwrdd
\sqrt{2x-4}-1=y
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\sqrt{2x-4}=y+1
Ychwanegu 1 at y ddwy ochr.
2x-4=\left(y+1\right)^{2}
Sgwariwch ddwy ochr yr hafaliad.
2x-4-\left(-4\right)=\left(y+1\right)^{2}-\left(-4\right)
Adio 4 at ddwy ochr yr hafaliad.
2x=\left(y+1\right)^{2}-\left(-4\right)
Mae tynnu -4 o’i hun yn gadael 0.
2x=\left(y+1\right)^{2}+4
Tynnu -4 o \left(y+1\right)^{2}.
\frac{2x}{2}=\frac{\left(y+1\right)^{2}+4}{2}
Rhannu’r ddwy ochr â 2.
x=\frac{\left(y+1\right)^{2}+4}{2}
Mae rhannu â 2 yn dad-wneud lluosi â 2.
x=\frac{\left(y+1\right)^{2}}{2}+2
Rhannwch \left(y+1\right)^{2}+4 â 2.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}