Datrys ar gyfer x
x=4\left(y^{2}-2\right)
y\geq 0
Datrys ar gyfer x (complex solution)
x=4\left(y^{2}-2\right)
arg(y)<\pi \text{ or }y=0
Datrys ar gyfer y (complex solution)
y=\frac{\sqrt{x+8}}{2}
Datrys ar gyfer y
y=\frac{\sqrt{x+8}}{2}
x\geq -8
Graff
Rhannu
Copïo i clipfwrdd
\sqrt{\frac{1}{4}x+2}=y
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{1}{4}x+2=y^{2}
Sgwariwch ddwy ochr yr hafaliad.
\frac{1}{4}x+2-2=y^{2}-2
Tynnu 2 o ddwy ochr yr hafaliad.
\frac{1}{4}x=y^{2}-2
Mae tynnu 2 o’i hun yn gadael 0.
\frac{\frac{1}{4}x}{\frac{1}{4}}=\frac{y^{2}-2}{\frac{1}{4}}
Lluosi’r ddwy ochr â 4.
x=\frac{y^{2}-2}{\frac{1}{4}}
Mae rhannu â \frac{1}{4} yn dad-wneud lluosi â \frac{1}{4}.
x=4y^{2}-8
Rhannwch y^{2}-2 â \frac{1}{4} drwy luosi y^{2}-2 â chilydd \frac{1}{4}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}