Datrys ar gyfer c (complex solution)
c=\frac{\sqrt{y^{2}-1}+y}{e^{x}}
Datrys ar gyfer c
c=\frac{\sqrt{y^{2}-1}+y}{e^{x}}
|y|\geq 1
Datrys ar gyfer x (complex solution)
x=2\pi n_{1}i+\ln(\frac{\sqrt{y^{2}-1}+y}{c})
n_{1}\in \mathrm{Z}
c\neq 0
Datrys ar gyfer x
x=\ln(\frac{\sqrt{y^{2}-1}+y}{c})
\left(c<0\text{ and }y\leq -1\right)\text{ or }\left(c>0\text{ and }y\geq 1\right)
Graff
Rhannu
Copïo i clipfwrdd
ce^{x}=y+\sqrt{y^{2}-1}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
e^{x}c=\sqrt{y^{2}-1}+y
Mae'r hafaliad yn y ffurf safonol.
\frac{e^{x}c}{e^{x}}=\frac{\sqrt{y^{2}-1}+y}{e^{x}}
Rhannu’r ddwy ochr â e^{x}.
c=\frac{\sqrt{y^{2}-1}+y}{e^{x}}
Mae rhannu â e^{x} yn dad-wneud lluosi â e^{x}.
ce^{x}=y+\sqrt{y^{2}-1}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
e^{x}c=\sqrt{y^{2}-1}+y
Mae'r hafaliad yn y ffurf safonol.
\frac{e^{x}c}{e^{x}}=\frac{\sqrt{y^{2}-1}+y}{e^{x}}
Rhannu’r ddwy ochr â e^{x}.
c=\frac{\sqrt{y^{2}-1}+y}{e^{x}}
Mae rhannu â e^{x} yn dad-wneud lluosi â e^{x}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}