Datrys ar gyfer x
x=-7
x=4
Graff
Rhannu
Copïo i clipfwrdd
x^{2}-4x+7\left(x-4\right)=0
Defnyddio’r briodwedd ddosbarthu i luosi x â x-4.
x^{2}-4x+7x-28=0
Defnyddio’r briodwedd ddosbarthu i luosi 7 â x-4.
x^{2}+3x-28=0
Cyfuno -4x a 7x i gael 3x.
a+b=3 ab=-28
Er mwyn datrys yr hafaliad, dylech ffactorio x^{2}+3x-28 gan ddefnyddio'r fformiwla x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,28 -2,14 -4,7
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn bositif, mae gan y rhif positif werth absoliwt mwy na'r negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -28.
-1+28=27 -2+14=12 -4+7=3
Cyfrifo'r swm ar gyfer pob pâr.
a=-4 b=7
Yr ateb yw'r pâr sy'n rhoi'r swm 3.
\left(x-4\right)\left(x+7\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(x+a\right)\left(x+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
x=4 x=-7
I ddod o hyd i atebion hafaliad, datryswch x-4=0 a x+7=0.
x^{2}-4x+7\left(x-4\right)=0
Defnyddio’r briodwedd ddosbarthu i luosi x â x-4.
x^{2}-4x+7x-28=0
Defnyddio’r briodwedd ddosbarthu i luosi 7 â x-4.
x^{2}+3x-28=0
Cyfuno -4x a 7x i gael 3x.
a+b=3 ab=1\left(-28\right)=-28
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx-28. I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,28 -2,14 -4,7
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn bositif, mae gan y rhif positif werth absoliwt mwy na'r negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -28.
-1+28=27 -2+14=12 -4+7=3
Cyfrifo'r swm ar gyfer pob pâr.
a=-4 b=7
Yr ateb yw'r pâr sy'n rhoi'r swm 3.
\left(x^{2}-4x\right)+\left(7x-28\right)
Ailysgrifennwch x^{2}+3x-28 fel \left(x^{2}-4x\right)+\left(7x-28\right).
x\left(x-4\right)+7\left(x-4\right)
Ni ddylech ffactorio x yn y cyntaf a 7 yn yr ail grŵp.
\left(x-4\right)\left(x+7\right)
Ffactoriwch y term cyffredin x-4 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=4 x=-7
I ddod o hyd i atebion hafaliad, datryswch x-4=0 a x+7=0.
x^{2}-4x+7\left(x-4\right)=0
Defnyddio’r briodwedd ddosbarthu i luosi x â x-4.
x^{2}-4x+7x-28=0
Defnyddio’r briodwedd ddosbarthu i luosi 7 â x-4.
x^{2}+3x-28=0
Cyfuno -4x a 7x i gael 3x.
x=\frac{-3±\sqrt{3^{2}-4\left(-28\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 3 am b, a -28 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-28\right)}}{2}
Sgwâr 3.
x=\frac{-3±\sqrt{9+112}}{2}
Lluoswch -4 â -28.
x=\frac{-3±\sqrt{121}}{2}
Adio 9 at 112.
x=\frac{-3±11}{2}
Cymryd isradd 121.
x=\frac{8}{2}
Datryswch yr hafaliad x=\frac{-3±11}{2} pan fydd ± yn plws. Adio -3 at 11.
x=4
Rhannwch 8 â 2.
x=-\frac{14}{2}
Datryswch yr hafaliad x=\frac{-3±11}{2} pan fydd ± yn minws. Tynnu 11 o -3.
x=-7
Rhannwch -14 â 2.
x=4 x=-7
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}-4x+7\left(x-4\right)=0
Defnyddio’r briodwedd ddosbarthu i luosi x â x-4.
x^{2}-4x+7x-28=0
Defnyddio’r briodwedd ddosbarthu i luosi 7 â x-4.
x^{2}+3x-28=0
Cyfuno -4x a 7x i gael 3x.
x^{2}+3x=28
Ychwanegu 28 at y ddwy ochr. Mae adio unrhyw beth at sero yn cyrraedd ei swm ei hun.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
Rhannwch 3, cyfernod y term x, â 2 i gael \frac{3}{2}. Yna ychwanegwch sgwâr \frac{3}{2} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
Sgwariwch \frac{3}{2} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
Adio 28 at \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
Ffactora x^{2}+3x+\frac{9}{4}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Cymrwch isradd dwy ochr yr hafaliad.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
Symleiddio.
x=4 x=-7
Tynnu \frac{3}{2} o ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}