Datrys ar gyfer x
x=-3
x=10
Graff
Rhannu
Copïo i clipfwrdd
x^{2}-7x-30=0
Tynnu 30 o'r ddwy ochr.
a+b=-7 ab=-30
Er mwyn datrys yr hafaliad, dylech ffactorio x^{2}-7x-30 gan ddefnyddio'r fformiwla x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
1,-30 2,-15 3,-10 5,-6
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn negatif, mae gan y rhif negatif werth absoliwt mwy na'r positif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Cyfrifo'r swm ar gyfer pob pâr.
a=-10 b=3
Yr ateb yw'r pâr sy'n rhoi'r swm -7.
\left(x-10\right)\left(x+3\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(x+a\right)\left(x+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
x=10 x=-3
I ddod o hyd i atebion hafaliad, datryswch x-10=0 a x+3=0.
x^{2}-7x-30=0
Tynnu 30 o'r ddwy ochr.
a+b=-7 ab=1\left(-30\right)=-30
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx-30. I ddod o hyd i a a b, gosodwch system i'w datrys.
1,-30 2,-15 3,-10 5,-6
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn negatif, mae gan y rhif negatif werth absoliwt mwy na'r positif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Cyfrifo'r swm ar gyfer pob pâr.
a=-10 b=3
Yr ateb yw'r pâr sy'n rhoi'r swm -7.
\left(x^{2}-10x\right)+\left(3x-30\right)
Ailysgrifennwch x^{2}-7x-30 fel \left(x^{2}-10x\right)+\left(3x-30\right).
x\left(x-10\right)+3\left(x-10\right)
Ni ddylech ffactorio x yn y cyntaf a 3 yn yr ail grŵp.
\left(x-10\right)\left(x+3\right)
Ffactoriwch y term cyffredin x-10 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=10 x=-3
I ddod o hyd i atebion hafaliad, datryswch x-10=0 a x+3=0.
x^{2}-7x=30
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x^{2}-7x-30=30-30
Tynnu 30 o ddwy ochr yr hafaliad.
x^{2}-7x-30=0
Mae tynnu 30 o’i hun yn gadael 0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-30\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, -7 am b, a -30 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-30\right)}}{2}
Sgwâr -7.
x=\frac{-\left(-7\right)±\sqrt{49+120}}{2}
Lluoswch -4 â -30.
x=\frac{-\left(-7\right)±\sqrt{169}}{2}
Adio 49 at 120.
x=\frac{-\left(-7\right)±13}{2}
Cymryd isradd 169.
x=\frac{7±13}{2}
Gwrthwyneb -7 yw 7.
x=\frac{20}{2}
Datryswch yr hafaliad x=\frac{7±13}{2} pan fydd ± yn plws. Adio 7 at 13.
x=10
Rhannwch 20 â 2.
x=-\frac{6}{2}
Datryswch yr hafaliad x=\frac{7±13}{2} pan fydd ± yn minws. Tynnu 13 o 7.
x=-3
Rhannwch -6 â 2.
x=10 x=-3
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}-7x=30
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=30+\left(-\frac{7}{2}\right)^{2}
Rhannwch -7, cyfernod y term x, â 2 i gael -\frac{7}{2}. Yna ychwanegwch sgwâr -\frac{7}{2} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-7x+\frac{49}{4}=30+\frac{49}{4}
Sgwariwch -\frac{7}{2} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}-7x+\frac{49}{4}=\frac{169}{4}
Adio 30 at \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{169}{4}
Ffactora x^{2}-7x+\frac{49}{4}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{7}{2}=\frac{13}{2} x-\frac{7}{2}=-\frac{13}{2}
Symleiddio.
x=10 x=-3
Adio \frac{7}{2} at ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}