Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

x^{2}-56-x=0
Tynnu x o'r ddwy ochr.
x^{2}-x-56=0
Ad-drefnu'r polynomial i’w roi yn y ffurf safonol. Rhowch y termau yn y drefn o'r pŵer uchaf i'r isaf.
a+b=-1 ab=-56
Er mwyn datrys yr hafaliad, dylech ffactorio x^{2}-x-56 gan ddefnyddio'r fformiwla x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
1,-56 2,-28 4,-14 7,-8
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn negatif, mae gan y rhif negatif werth absoliwt mwy na'r positif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -56.
1-56=-55 2-28=-26 4-14=-10 7-8=-1
Cyfrifo'r swm ar gyfer pob pâr.
a=-8 b=7
Yr ateb yw'r pâr sy'n rhoi'r swm -1.
\left(x-8\right)\left(x+7\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(x+a\right)\left(x+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
x=8 x=-7
I ddod o hyd i atebion hafaliad, datryswch x-8=0 a x+7=0.
x^{2}-56-x=0
Tynnu x o'r ddwy ochr.
x^{2}-x-56=0
Ad-drefnu'r polynomial i’w roi yn y ffurf safonol. Rhowch y termau yn y drefn o'r pŵer uchaf i'r isaf.
a+b=-1 ab=1\left(-56\right)=-56
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx-56. I ddod o hyd i a a b, gosodwch system i'w datrys.
1,-56 2,-28 4,-14 7,-8
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn negatif, mae gan y rhif negatif werth absoliwt mwy na'r positif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -56.
1-56=-55 2-28=-26 4-14=-10 7-8=-1
Cyfrifo'r swm ar gyfer pob pâr.
a=-8 b=7
Yr ateb yw'r pâr sy'n rhoi'r swm -1.
\left(x^{2}-8x\right)+\left(7x-56\right)
Ailysgrifennwch x^{2}-x-56 fel \left(x^{2}-8x\right)+\left(7x-56\right).
x\left(x-8\right)+7\left(x-8\right)
Ni ddylech ffactorio x yn y cyntaf a 7 yn yr ail grŵp.
\left(x-8\right)\left(x+7\right)
Ffactoriwch y term cyffredin x-8 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=8 x=-7
I ddod o hyd i atebion hafaliad, datryswch x-8=0 a x+7=0.
x^{2}-56-x=0
Tynnu x o'r ddwy ochr.
x^{2}-x-56=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-56\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, -1 am b, a -56 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+224}}{2}
Lluoswch -4 â -56.
x=\frac{-\left(-1\right)±\sqrt{225}}{2}
Adio 1 at 224.
x=\frac{-\left(-1\right)±15}{2}
Cymryd isradd 225.
x=\frac{1±15}{2}
Gwrthwyneb -1 yw 1.
x=\frac{16}{2}
Datryswch yr hafaliad x=\frac{1±15}{2} pan fydd ± yn plws. Adio 1 at 15.
x=8
Rhannwch 16 â 2.
x=-\frac{14}{2}
Datryswch yr hafaliad x=\frac{1±15}{2} pan fydd ± yn minws. Tynnu 15 o 1.
x=-7
Rhannwch -14 â 2.
x=8 x=-7
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}-56-x=0
Tynnu x o'r ddwy ochr.
x^{2}-x=56
Ychwanegu 56 at y ddwy ochr. Mae adio unrhyw beth at sero yn cyrraedd ei swm ei hun.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=56+\left(-\frac{1}{2}\right)^{2}
Rhannwch -1, cyfernod y term x, â 2 i gael -\frac{1}{2}. Yna ychwanegwch sgwâr -\frac{1}{2} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-x+\frac{1}{4}=56+\frac{1}{4}
Sgwariwch -\frac{1}{2} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}-x+\frac{1}{4}=\frac{225}{4}
Adio 56 at \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{225}{4}
Ffactora x^{2}-x+\frac{1}{4}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{1}{2}=\frac{15}{2} x-\frac{1}{2}=-\frac{15}{2}
Symleiddio.
x=8 x=-7
Adio \frac{1}{2} at ddwy ochr yr hafaliad.