Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

a+b=-3 ab=2
Er mwyn datrys yr hafaliad, dylech ffactorio x^{2}-3x+2 gan ddefnyddio'r fformiwla x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
a=-2 b=-1
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn negatif, mae a a b ill dau yn negatif. Yr unig fath o bâr yw ateb y system.
\left(x-2\right)\left(x-1\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(x+a\right)\left(x+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
x=2 x=1
I ddod o hyd i atebion hafaliad, datryswch x-2=0 a x-1=0.
a+b=-3 ab=1\times 2=2
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx+2. I ddod o hyd i a a b, gosodwch system i'w datrys.
a=-2 b=-1
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn negatif, mae a a b ill dau yn negatif. Yr unig fath o bâr yw ateb y system.
\left(x^{2}-2x\right)+\left(-x+2\right)
Ailysgrifennwch x^{2}-3x+2 fel \left(x^{2}-2x\right)+\left(-x+2\right).
x\left(x-2\right)-\left(x-2\right)
Ni ddylech ffactorio x yn y cyntaf a -1 yn yr ail grŵp.
\left(x-2\right)\left(x-1\right)
Ffactoriwch y term cyffredin x-2 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=2 x=1
I ddod o hyd i atebion hafaliad, datryswch x-2=0 a x-1=0.
x^{2}-3x+2=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, -3 am b, a 2 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2}
Sgwâr -3.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2}
Lluoswch -4 â 2.
x=\frac{-\left(-3\right)±\sqrt{1}}{2}
Adio 9 at -8.
x=\frac{-\left(-3\right)±1}{2}
Cymryd isradd 1.
x=\frac{3±1}{2}
Gwrthwyneb -3 yw 3.
x=\frac{4}{2}
Datryswch yr hafaliad x=\frac{3±1}{2} pan fydd ± yn plws. Adio 3 at 1.
x=2
Rhannwch 4 â 2.
x=\frac{2}{2}
Datryswch yr hafaliad x=\frac{3±1}{2} pan fydd ± yn minws. Tynnu 1 o 3.
x=1
Rhannwch 2 â 2.
x=2 x=1
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}-3x+2=0
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
x^{2}-3x+2-2=-2
Tynnu 2 o ddwy ochr yr hafaliad.
x^{2}-3x=-2
Mae tynnu 2 o’i hun yn gadael 0.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Rhannwch -3, cyfernod y term x, â 2 i gael -\frac{3}{2}. Yna ychwanegwch sgwâr -\frac{3}{2} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Sgwariwch -\frac{3}{2} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Adio -2 at \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Ffactora x^{2}-3x+\frac{9}{4}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Symleiddio.
x=2 x=1
Adio \frac{3}{2} at ddwy ochr yr hafaliad.