Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

x^{2}+5x-9=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-5±\sqrt{5^{2}-4\left(-9\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 5 am b, a -9 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-9\right)}}{2}
Sgwâr 5.
x=\frac{-5±\sqrt{25+36}}{2}
Lluoswch -4 â -9.
x=\frac{-5±\sqrt{61}}{2}
Adio 25 at 36.
x=\frac{\sqrt{61}-5}{2}
Datryswch yr hafaliad x=\frac{-5±\sqrt{61}}{2} pan fydd ± yn plws. Adio -5 at \sqrt{61}.
x=\frac{-\sqrt{61}-5}{2}
Datryswch yr hafaliad x=\frac{-5±\sqrt{61}}{2} pan fydd ± yn minws. Tynnu \sqrt{61} o -5.
x=\frac{\sqrt{61}-5}{2} x=\frac{-\sqrt{61}-5}{2}
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}+5x-9=0
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
x^{2}+5x-9-\left(-9\right)=-\left(-9\right)
Adio 9 at ddwy ochr yr hafaliad.
x^{2}+5x=-\left(-9\right)
Mae tynnu -9 o’i hun yn gadael 0.
x^{2}+5x=9
Tynnu -9 o 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=9+\left(\frac{5}{2}\right)^{2}
Rhannwch 5, cyfernod y term x, â 2 i gael \frac{5}{2}. Yna ychwanegwch sgwâr \frac{5}{2} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}+5x+\frac{25}{4}=9+\frac{25}{4}
Sgwariwch \frac{5}{2} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}+5x+\frac{25}{4}=\frac{61}{4}
Adio 9 at \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{61}{4}
Ffactora x^{2}+5x+\frac{25}{4}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{61}{4}}
Cymrwch isradd dwy ochr yr hafaliad.
x+\frac{5}{2}=\frac{\sqrt{61}}{2} x+\frac{5}{2}=-\frac{\sqrt{61}}{2}
Symleiddio.
x=\frac{\sqrt{61}-5}{2} x=\frac{-\sqrt{61}-5}{2}
Tynnu \frac{5}{2} o ddwy ochr yr hafaliad.