Datrys ar gyfer x
x=-15
x=2
Graff
Rhannu
Copïo i clipfwrdd
a+b=13 ab=-30
Er mwyn datrys yr hafaliad, dylech ffactorio x^{2}+13x-30 gan ddefnyddio'r fformiwla x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,30 -2,15 -3,10 -5,6
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn bositif, mae gan y rhif positif werth absoliwt mwy na'r negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Cyfrifo'r swm ar gyfer pob pâr.
a=-2 b=15
Yr ateb yw'r pâr sy'n rhoi'r swm 13.
\left(x-2\right)\left(x+15\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(x+a\right)\left(x+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
x=2 x=-15
I ddod o hyd i atebion hafaliad, datryswch x-2=0 a x+15=0.
a+b=13 ab=1\left(-30\right)=-30
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx-30. I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,30 -2,15 -3,10 -5,6
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn bositif, mae gan y rhif positif werth absoliwt mwy na'r negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Cyfrifo'r swm ar gyfer pob pâr.
a=-2 b=15
Yr ateb yw'r pâr sy'n rhoi'r swm 13.
\left(x^{2}-2x\right)+\left(15x-30\right)
Ailysgrifennwch x^{2}+13x-30 fel \left(x^{2}-2x\right)+\left(15x-30\right).
x\left(x-2\right)+15\left(x-2\right)
Ni ddylech ffactorio x yn y cyntaf a 15 yn yr ail grŵp.
\left(x-2\right)\left(x+15\right)
Ffactoriwch y term cyffredin x-2 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=2 x=-15
I ddod o hyd i atebion hafaliad, datryswch x-2=0 a x+15=0.
x^{2}+13x-30=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-13±\sqrt{13^{2}-4\left(-30\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 13 am b, a -30 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-30\right)}}{2}
Sgwâr 13.
x=\frac{-13±\sqrt{169+120}}{2}
Lluoswch -4 â -30.
x=\frac{-13±\sqrt{289}}{2}
Adio 169 at 120.
x=\frac{-13±17}{2}
Cymryd isradd 289.
x=\frac{4}{2}
Datryswch yr hafaliad x=\frac{-13±17}{2} pan fydd ± yn plws. Adio -13 at 17.
x=2
Rhannwch 4 â 2.
x=-\frac{30}{2}
Datryswch yr hafaliad x=\frac{-13±17}{2} pan fydd ± yn minws. Tynnu 17 o -13.
x=-15
Rhannwch -30 â 2.
x=2 x=-15
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}+13x-30=0
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
x^{2}+13x-30-\left(-30\right)=-\left(-30\right)
Adio 30 at ddwy ochr yr hafaliad.
x^{2}+13x=-\left(-30\right)
Mae tynnu -30 o’i hun yn gadael 0.
x^{2}+13x=30
Tynnu -30 o 0.
x^{2}+13x+\left(\frac{13}{2}\right)^{2}=30+\left(\frac{13}{2}\right)^{2}
Rhannwch 13, cyfernod y term x, â 2 i gael \frac{13}{2}. Yna ychwanegwch sgwâr \frac{13}{2} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}+13x+\frac{169}{4}=30+\frac{169}{4}
Sgwariwch \frac{13}{2} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}+13x+\frac{169}{4}=\frac{289}{4}
Adio 30 at \frac{169}{4}.
\left(x+\frac{13}{2}\right)^{2}=\frac{289}{4}
Ffactora x^{2}+13x+\frac{169}{4}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Cymrwch isradd dwy ochr yr hafaliad.
x+\frac{13}{2}=\frac{17}{2} x+\frac{13}{2}=-\frac{17}{2}
Symleiddio.
x=2 x=-15
Tynnu \frac{13}{2} o ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}