Datrys ar gyfer y (complex solution)
y=\frac{x-3\sqrt{2x+5}}{2}
Datrys ar gyfer y
y=\frac{x-3\sqrt{2x+5}}{2}
x\geq -\frac{5}{2}
Datrys ar gyfer x (complex solution)
\left\{\begin{matrix}x=2y+3\sqrt{4y+14}+9\text{, }&arg(\sqrt{4y+14}+3)<\pi \\x=2y-3\sqrt{4y+14}+9\text{, }&y=-\frac{5}{4}\text{ or }arg(-\sqrt{4y+14}+3)<\pi \end{matrix}\right.
Datrys ar gyfer x
\left\{\begin{matrix}x=2y+3\sqrt{4y+14}+9\text{, }&y\geq -\frac{7}{2}\\x=2y-3\sqrt{4y+14}+9\text{, }&y\geq -\frac{7}{2}\text{ and }y\leq -\frac{5}{4}\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
2y+3\sqrt{2x+5}=x
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
2y=x-3\sqrt{2x+5}
Tynnu 3\sqrt{2x+5} o'r ddwy ochr.
\frac{2y}{2}=\frac{x-3\sqrt{2x+5}}{2}
Rhannu’r ddwy ochr â 2.
y=\frac{x-3\sqrt{2x+5}}{2}
Mae rhannu â 2 yn dad-wneud lluosi â 2.
2y+3\sqrt{2x+5}=x
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
2y=x-3\sqrt{2x+5}
Tynnu 3\sqrt{2x+5} o'r ddwy ochr.
\frac{2y}{2}=\frac{x-3\sqrt{2x+5}}{2}
Rhannu’r ddwy ochr â 2.
y=\frac{x-3\sqrt{2x+5}}{2}
Mae rhannu â 2 yn dad-wneud lluosi â 2.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}