Datrys ar gyfer p
p=-12
p=-4
Rhannu
Copïo i clipfwrdd
a+b=16 ab=48
Er mwyn datrys yr hafaliad, dylech ffactorio p^{2}+16p+48 gan ddefnyddio'r fformiwla p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
1,48 2,24 3,16 4,12 6,8
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn bositif, mae a a b ill dau yn bositif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch 48.
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
Cyfrifo'r swm ar gyfer pob pâr.
a=4 b=12
Yr ateb yw'r pâr sy'n rhoi'r swm 16.
\left(p+4\right)\left(p+12\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(p+a\right)\left(p+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
p=-4 p=-12
I ddod o hyd i atebion hafaliad, datryswch p+4=0 a p+12=0.
a+b=16 ab=1\times 48=48
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel p^{2}+ap+bp+48. I ddod o hyd i a a b, gosodwch system i'w datrys.
1,48 2,24 3,16 4,12 6,8
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn bositif, mae a a b ill dau yn bositif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch 48.
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
Cyfrifo'r swm ar gyfer pob pâr.
a=4 b=12
Yr ateb yw'r pâr sy'n rhoi'r swm 16.
\left(p^{2}+4p\right)+\left(12p+48\right)
Ailysgrifennwch p^{2}+16p+48 fel \left(p^{2}+4p\right)+\left(12p+48\right).
p\left(p+4\right)+12\left(p+4\right)
Ni ddylech ffactorio p yn y cyntaf a 12 yn yr ail grŵp.
\left(p+4\right)\left(p+12\right)
Ffactoriwch y term cyffredin p+4 allan drwy ddefnyddio'r briodwedd ddosbarthol.
p=-4 p=-12
I ddod o hyd i atebion hafaliad, datryswch p+4=0 a p+12=0.
p^{2}+16p+48=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
p=\frac{-16±\sqrt{16^{2}-4\times 48}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 16 am b, a 48 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-16±\sqrt{256-4\times 48}}{2}
Sgwâr 16.
p=\frac{-16±\sqrt{256-192}}{2}
Lluoswch -4 â 48.
p=\frac{-16±\sqrt{64}}{2}
Adio 256 at -192.
p=\frac{-16±8}{2}
Cymryd isradd 64.
p=-\frac{8}{2}
Datryswch yr hafaliad p=\frac{-16±8}{2} pan fydd ± yn plws. Adio -16 at 8.
p=-4
Rhannwch -8 â 2.
p=-\frac{24}{2}
Datryswch yr hafaliad p=\frac{-16±8}{2} pan fydd ± yn minws. Tynnu 8 o -16.
p=-12
Rhannwch -24 â 2.
p=-4 p=-12
Mae’r hafaliad wedi’i ddatrys nawr.
p^{2}+16p+48=0
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
p^{2}+16p+48-48=-48
Tynnu 48 o ddwy ochr yr hafaliad.
p^{2}+16p=-48
Mae tynnu 48 o’i hun yn gadael 0.
p^{2}+16p+8^{2}=-48+8^{2}
Rhannwch 16, cyfernod y term x, â 2 i gael 8. Yna ychwanegwch sgwâr 8 at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
p^{2}+16p+64=-48+64
Sgwâr 8.
p^{2}+16p+64=16
Adio -48 at 64.
\left(p+8\right)^{2}=16
Ffactora p^{2}+16p+64. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+8\right)^{2}}=\sqrt{16}
Cymrwch isradd dwy ochr yr hafaliad.
p+8=4 p+8=-4
Symleiddio.
p=-4 p=-12
Tynnu 8 o ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}