Datrys ar gyfer a
a=\pi xp^{2}
p\geq 0\text{ and }x\neq 0
Datrys ar gyfer a (complex solution)
a=\pi xp^{2}
x\neq 0\text{ and }\left(p=0\text{ or }arg(p)<\pi \right)
Datrys ar gyfer p (complex solution)
p=\sqrt{\frac{a}{\pi x}}
x\neq 0
Datrys ar gyfer p
p=\sqrt{\frac{a}{\pi x}}
\left(a\geq 0\text{ and }x>0\right)\text{ or }\left(a\leq 0\text{ and }x<0\right)
Graff
Rhannu
Copïo i clipfwrdd
\sqrt{\frac{a}{\pi x}}=p
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{1}{\pi x}a=p^{2}
Sgwariwch ddwy ochr yr hafaliad.
\frac{\frac{1}{\pi x}a\pi x}{1}=\frac{p^{2}\pi x}{1}
Rhannu’r ddwy ochr â \pi ^{-1}x^{-1}.
a=\frac{p^{2}\pi x}{1}
Mae rhannu â \pi ^{-1}x^{-1} yn dad-wneud lluosi â \pi ^{-1}x^{-1}.
a=\pi xp^{2}
Rhannwch p^{2} â \pi ^{-1}x^{-1}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}