Datrys ar gyfer m (complex solution)
\left\{\begin{matrix}m=\frac{p}{f^{2}}\text{, }&f\neq 0\\m\in \mathrm{C}\text{, }&p=0\text{ and }f=0\end{matrix}\right.
Datrys ar gyfer m
\left\{\begin{matrix}m=\frac{p}{f^{2}}\text{, }&f\neq 0\\m\in \mathrm{R}\text{, }&p=0\text{ and }f=0\end{matrix}\right.
Datrys ar gyfer f (complex solution)
\left\{\begin{matrix}f=-m^{-\frac{1}{2}}\sqrt{p}\text{; }f=m^{-\frac{1}{2}}\sqrt{p}\text{, }&m\neq 0\\f\in \mathrm{C}\text{, }&p=0\text{ and }m=0\end{matrix}\right.
Datrys ar gyfer f
\left\{\begin{matrix}f=\sqrt{\frac{p}{m}}\text{; }f=-\sqrt{\frac{p}{m}}\text{, }&\left(p\geq 0\text{ and }m>0\right)\text{ or }\left(p\leq 0\text{ and }m<0\right)\\f\in \mathrm{R}\text{, }&p=0\text{ and }m=0\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
f^{2}m=p
Mae'r hafaliad yn y ffurf safonol.
\frac{f^{2}m}{f^{2}}=\frac{p}{f^{2}}
Rhannu’r ddwy ochr â f^{2}.
m=\frac{p}{f^{2}}
Mae rhannu â f^{2} yn dad-wneud lluosi â f^{2}.
f^{2}m=p
Mae'r hafaliad yn y ffurf safonol.
\frac{f^{2}m}{f^{2}}=\frac{p}{f^{2}}
Rhannu’r ddwy ochr â f^{2}.
m=\frac{p}{f^{2}}
Mae rhannu â f^{2} yn dad-wneud lluosi â f^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}