Datrys ar gyfer c
\left\{\begin{matrix}c=\frac{iℏ∂_{μ}\gamma ^{\mu }}{m}\text{, }&m\neq 0\\c\in \mathrm{C}\text{, }&\psi =0\text{ or }\left(ℏ=0\text{ and }m=0\right)\text{ or }\left(\gamma =0\text{ and }\mu \neq 0\text{ and }m=0\right)\text{ or }\left(∂_{μ}=0\text{ and }m=0\right)\end{matrix}\right.
Datrys ar gyfer m
\left\{\begin{matrix}m=\frac{iℏ∂_{μ}\gamma ^{\mu }}{c}\text{, }&c\neq 0\\m\in \mathrm{C}\text{, }&\psi =0\text{ or }\left(ℏ=0\text{ and }c=0\right)\text{ or }\left(\gamma =0\text{ and }\mu \neq 0\text{ and }c=0\right)\text{ or }\left(∂_{μ}=0\text{ and }c=0\right)\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
mc\psi =iℏ\gamma ^{\mu }∂_{μ}\psi
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
m\psi c=i\psi ℏ∂_{μ}\gamma ^{\mu }
Mae'r hafaliad yn y ffurf safonol.
\frac{m\psi c}{m\psi }=\frac{i\psi ℏ∂_{μ}\gamma ^{\mu }}{m\psi }
Rhannu’r ddwy ochr â m\psi .
c=\frac{i\psi ℏ∂_{μ}\gamma ^{\mu }}{m\psi }
Mae rhannu â m\psi yn dad-wneud lluosi â m\psi .
c=\frac{iℏ∂_{μ}\gamma ^{\mu }}{m}
Rhannwch iℏ\gamma ^{\mu }∂_{μ}\psi â m\psi .
mc\psi =iℏ\gamma ^{\mu }∂_{μ}\psi
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
c\psi m=i\psi ℏ∂_{μ}\gamma ^{\mu }
Mae'r hafaliad yn y ffurf safonol.
\frac{c\psi m}{c\psi }=\frac{i\psi ℏ∂_{μ}\gamma ^{\mu }}{c\psi }
Rhannu’r ddwy ochr â c\psi .
m=\frac{i\psi ℏ∂_{μ}\gamma ^{\mu }}{c\psi }
Mae rhannu â c\psi yn dad-wneud lluosi â c\psi .
m=\frac{iℏ∂_{μ}\gamma ^{\mu }}{c}
Rhannwch iℏ\gamma ^{\mu }∂_{μ}\psi â c\psi .
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}