Ffactor
-16\left(t-\left(13-3\sqrt{19}\right)\right)\left(t-\left(3\sqrt{19}+13\right)\right)
Enrhifo
32+416t-16t^{2}
Rhannu
Copïo i clipfwrdd
-16t^{2}+416t+32=0
Gellir ffactorio polynomial cwadratig gan ddefnyddio’r trawsffurfiad ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), lle x_{1} a x_{2} yw datrysiadau’r hafaliad cwadratig ax^{2}+bx+c=0.
t=\frac{-416±\sqrt{416^{2}-4\left(-16\right)\times 32}}{2\left(-16\right)}
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
t=\frac{-416±\sqrt{173056-4\left(-16\right)\times 32}}{2\left(-16\right)}
Sgwâr 416.
t=\frac{-416±\sqrt{173056+64\times 32}}{2\left(-16\right)}
Lluoswch -4 â -16.
t=\frac{-416±\sqrt{173056+2048}}{2\left(-16\right)}
Lluoswch 64 â 32.
t=\frac{-416±\sqrt{175104}}{2\left(-16\right)}
Adio 173056 at 2048.
t=\frac{-416±96\sqrt{19}}{2\left(-16\right)}
Cymryd isradd 175104.
t=\frac{-416±96\sqrt{19}}{-32}
Lluoswch 2 â -16.
t=\frac{96\sqrt{19}-416}{-32}
Datryswch yr hafaliad t=\frac{-416±96\sqrt{19}}{-32} pan fydd ± yn plws. Adio -416 at 96\sqrt{19}.
t=13-3\sqrt{19}
Rhannwch -416+96\sqrt{19} â -32.
t=\frac{-96\sqrt{19}-416}{-32}
Datryswch yr hafaliad t=\frac{-416±96\sqrt{19}}{-32} pan fydd ± yn minws. Tynnu 96\sqrt{19} o -416.
t=3\sqrt{19}+13
Rhannwch -416-96\sqrt{19} â -32.
-16t^{2}+416t+32=-16\left(t-\left(13-3\sqrt{19}\right)\right)\left(t-\left(3\sqrt{19}+13\right)\right)
Ffactoriwch y mynegiad gwreiddiol gan ddefnyddio ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Cyfnewidiwch 13-3\sqrt{19} am x_{1} a 13+3\sqrt{19} am x_{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}