Datrys ar gyfer V
V=\frac{28900000g}{667}
Datrys ar gyfer g
g=\frac{667V}{28900000}
Rhannu
Copïo i clipfwrdd
g\times 2\times \frac{1}{10000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Cyfrifo 10 i bŵer -7 a chael \frac{1}{10000000}.
g\times \frac{1}{5000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Lluosi 2 a \frac{1}{10000000} i gael \frac{1}{5000000}.
g\times \frac{1}{5000000}=\frac{1334000\times 10^{-11}V}{1700^{2}}
Lluosi 2000 a 667 i gael 1334000.
g\times \frac{1}{5000000}=\frac{1334000\times \frac{1}{100000000000}V}{1700^{2}}
Cyfrifo 10 i bŵer -11 a chael \frac{1}{100000000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{1700^{2}}
Lluosi 1334000 a \frac{1}{100000000000} i gael \frac{667}{50000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{2890000}
Cyfrifo 1700 i bŵer 2 a chael 2890000.
g\times \frac{1}{5000000}=\frac{667}{144500000000000}V
Rhannu \frac{667}{50000000}V â 2890000 i gael \frac{667}{144500000000000}V.
\frac{667}{144500000000000}V=g\times \frac{1}{5000000}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{667}{144500000000000}V=\frac{g}{5000000}
Mae'r hafaliad yn y ffurf safonol.
\frac{\frac{667}{144500000000000}V}{\frac{667}{144500000000000}}=\frac{g}{\frac{667}{144500000000000}\times 5000000}
Rhannu dwy ochr hafaliad â \frac{667}{144500000000000}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
V=\frac{g}{\frac{667}{144500000000000}\times 5000000}
Mae rhannu â \frac{667}{144500000000000} yn dad-wneud lluosi â \frac{667}{144500000000000}.
V=\frac{28900000g}{667}
Rhannwch \frac{g}{5000000} â \frac{667}{144500000000000} drwy luosi \frac{g}{5000000} â chilydd \frac{667}{144500000000000}.
g\times 2\times \frac{1}{10000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Cyfrifo 10 i bŵer -7 a chael \frac{1}{10000000}.
g\times \frac{1}{5000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Lluosi 2 a \frac{1}{10000000} i gael \frac{1}{5000000}.
g\times \frac{1}{5000000}=\frac{1334000\times 10^{-11}V}{1700^{2}}
Lluosi 2000 a 667 i gael 1334000.
g\times \frac{1}{5000000}=\frac{1334000\times \frac{1}{100000000000}V}{1700^{2}}
Cyfrifo 10 i bŵer -11 a chael \frac{1}{100000000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{1700^{2}}
Lluosi 1334000 a \frac{1}{100000000000} i gael \frac{667}{50000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{2890000}
Cyfrifo 1700 i bŵer 2 a chael 2890000.
g\times \frac{1}{5000000}=\frac{667}{144500000000000}V
Rhannu \frac{667}{50000000}V â 2890000 i gael \frac{667}{144500000000000}V.
\frac{1}{5000000}g=\frac{667V}{144500000000000}
Mae'r hafaliad yn y ffurf safonol.
\frac{\frac{1}{5000000}g}{\frac{1}{5000000}}=\frac{667V}{\frac{1}{5000000}\times 144500000000000}
Lluosi’r ddwy ochr â 5000000.
g=\frac{667V}{\frac{1}{5000000}\times 144500000000000}
Mae rhannu â \frac{1}{5000000} yn dad-wneud lluosi â \frac{1}{5000000}.
g=\frac{667V}{28900000}
Rhannwch \frac{667V}{144500000000000} â \frac{1}{5000000} drwy luosi \frac{667V}{144500000000000} â chilydd \frac{1}{5000000}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}