Datrys ar gyfer f
\left\{\begin{matrix}f=-\frac{m^{\frac{2}{3}}n^{\frac{4}{3}}-1}{x^{\frac{2}{3}}}\text{, }&x\neq 0\\f\in \mathrm{R}\text{, }&n\neq 0\text{ and }x=0\text{ and }|m|=\frac{1}{n^{2}}\end{matrix}\right.
Datrys ar gyfer m
\left\{\begin{matrix}m=-\frac{1}{n^{2}}\text{; }m=\frac{1}{n^{2}}\text{, }&x=0\text{ and }n\neq 0\\m\in \mathrm{R}\text{, }&f=\frac{1}{x^{\frac{2}{3}}}\text{ and }n=0\text{ and }x\neq 0\\m=-\frac{\left(1-x^{\frac{2}{3}}f\right)^{\frac{3}{2}}}{n^{2}}\text{; }m=\frac{\left(1-x^{\frac{2}{3}}f\right)^{\frac{3}{2}}}{n^{2}}\text{, }&n\neq 0\text{ and }f\leq \frac{1}{x^{\frac{2}{3}}}\text{ and }x\neq 0\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
fx^{\frac{2}{3}}+m^{\frac{2}{3}}\left(n^{2}\right)^{\frac{2}{3}}=1
Ehangu \left(mn^{2}\right)^{\frac{2}{3}}.
fx^{\frac{2}{3}}+m^{\frac{2}{3}}n^{\frac{4}{3}}=1
I godi pŵer rhif i bŵer arall, lluoswch yr esbonyddion. Lluoswch 2 a \frac{2}{3} i gael \frac{4}{3}.
fx^{\frac{2}{3}}=1-m^{\frac{2}{3}}n^{\frac{4}{3}}
Tynnu m^{\frac{2}{3}}n^{\frac{4}{3}} o'r ddwy ochr.
x^{\frac{2}{3}}f=-m^{\frac{2}{3}}n^{\frac{4}{3}}+1
Aildrefnu'r termau.
x^{\frac{2}{3}}f=1-m^{\frac{2}{3}}n^{\frac{4}{3}}
Mae'r hafaliad yn y ffurf safonol.
\frac{x^{\frac{2}{3}}f}{x^{\frac{2}{3}}}=\frac{1-m^{\frac{2}{3}}n^{\frac{4}{3}}}{x^{\frac{2}{3}}}
Rhannu’r ddwy ochr â x^{\frac{2}{3}}.
f=\frac{1-m^{\frac{2}{3}}n^{\frac{4}{3}}}{x^{\frac{2}{3}}}
Mae rhannu â x^{\frac{2}{3}} yn dad-wneud lluosi â x^{\frac{2}{3}}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}