Neidio i'r prif gynnwys
Datrys ar gyfer x, y (complex solution)
Tick mark Image
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
bx+cy=a+b
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
bx=\left(-c\right)y+a+b
Tynnu cy o ddwy ochr yr hafaliad.
x=\frac{1}{b}\left(\left(-c\right)y+a+b\right)
Rhannu’r ddwy ochr â b.
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}
Lluoswch \frac{1}{b} â -cy+a+b.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(\left(-\frac{c}{b}\right)y+\frac{a+b}{b}\right)+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Amnewid \frac{-cy+a+b}{b} am x yn yr hafaliad arall, \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}.
\left(-\frac{2ac}{\left(a-b\right)\left(a+b\right)}\right)y+\frac{2a}{a-b}+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Lluoswch a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) â \frac{-cy+a+b}{b}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y+\frac{2a}{a-b}=\frac{2a}{a+b}
Adio -\frac{2acy}{\left(a-b\right)\left(a+b\right)} at \frac{2cay}{\left(b-a\right)\left(b+a\right)}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y=-\frac{4ab}{a^{2}-b^{2}}
Tynnu \frac{2a}{a-b} o ddwy ochr yr hafaliad.
y=\frac{b}{c}
Rhannu’r ddwy ochr â \frac{4ca}{\left(b-a\right)\left(a+b\right)}.
x=\left(-\frac{c}{b}\right)\times \frac{b}{c}+\frac{a+b}{b}
Cyfnewidiwch \frac{b}{c} am y yn x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-1+\frac{a+b}{b}
Lluoswch -\frac{c}{b} â \frac{b}{c}.
x=\frac{a}{b}
Adio \frac{a+b}{b} at -1.
x=\frac{a}{b},y=\frac{b}{c}
Mae’r system wedi’i datrys nawr.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}b&c\\-\frac{2ab}{\left(-a+b\right)\left(a+b\right)}&\frac{2ca}{\left(b-a\right)\left(b+a\right)}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2ac}{\left(b-a\right)\left(a+b\right)\left(b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}\right)}&-\frac{c}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\\-\frac{\frac{2ab}{\left(a-b\right)\left(a+b\right)}}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}&\frac{b}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}&\frac{a}{4b}-\frac{b}{4a}\\\frac{1}{2c}&\frac{\left(b-a\right)\left(a+b\right)}{4ac}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}\left(a+b\right)+\left(\frac{a}{4b}-\frac{b}{4a}\right)\times \frac{2a}{a+b}\\\frac{1}{2c}\left(a+b\right)+\frac{\left(b-a\right)\left(a+b\right)}{4ac}\times \frac{2a}{a+b}\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a}{b}\\\frac{b}{c}\end{matrix}\right)
Gwneud y symiau.
x=\frac{a}{b},y=\frac{b}{c}
Echdynnu yr elfennau matrics x a y.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)abx+\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)acy=\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(a+b\right),b\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+b\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=b\times \frac{2a}{a+b}
I wneud bx a \frac{2abx}{\left(a-b\right)\left(a+b\right)} yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) a holl dermau naill ochr yr ail â b.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b},\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}
Symleiddio.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\left(-\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}\right)x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Tynnwch \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b} o \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b} trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Adio \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} at -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}. Mae'r termau \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} a -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Adio \frac{2abcy}{\left(a-b\right)\left(a+b\right)} at -\frac{2bcay}{\left(b-a\right)\left(b+a\right)}.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{4ab^{2}}{\left(a-b\right)\left(a+b\right)}
Adio \frac{2ab}{a-b} at -\frac{2ba}{a+b}.
y=\frac{b}{c}
Rhannu’r ddwy ochr â \frac{4bca}{\left(a-b\right)\left(a+b\right)}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)c\times \frac{b}{c}=\frac{2a}{a+b}
Cyfnewidiwch \frac{b}{c} am y yn \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\frac{2ab}{\left(b-a\right)\left(a+b\right)}=\frac{2a}{a+b}
Lluoswch c\left(\left(b-a\right)^{-1}-\left(b+a\right)^{-1}\right) â \frac{b}{c}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax=-\frac{2a^{2}}{\left(b-a\right)\left(a+b\right)}
Tynnu \frac{2ab}{\left(b-a\right)\left(b+a\right)} o ddwy ochr yr hafaliad.
x=\frac{a}{b}
Rhannu’r ddwy ochr â a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right).
x=\frac{a}{b},y=\frac{b}{c}
Mae’r system wedi’i datrys nawr.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
bx+cy=a+b
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
bx=\left(-c\right)y+a+b
Tynnu cy o ddwy ochr yr hafaliad.
x=\frac{1}{b}\left(\left(-c\right)y+a+b\right)
Rhannu’r ddwy ochr â b.
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}
Lluoswch \frac{1}{b} â -cy+a+b.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(\left(-\frac{c}{b}\right)y+\frac{a+b}{b}\right)+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Amnewid \frac{-cy+a+b}{b} am x yn yr hafaliad arall, \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}.
\left(-\frac{2ac}{\left(a-b\right)\left(a+b\right)}\right)y+\frac{2a}{a-b}+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Lluoswch a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) â \frac{-cy+a+b}{b}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y+\frac{2a}{a-b}=\frac{2a}{a+b}
Adio -\frac{2acy}{\left(a-b\right)\left(a+b\right)} at \frac{2cay}{\left(b-a\right)\left(b+a\right)}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y=-\frac{4ab}{a^{2}-b^{2}}
Tynnu \frac{2a}{a-b} o ddwy ochr yr hafaliad.
y=\frac{b}{c}
Rhannu’r ddwy ochr â \frac{4ca}{\left(b-a\right)\left(a+b\right)}.
x=\left(-\frac{c}{b}\right)\times \frac{b}{c}+\frac{a+b}{b}
Cyfnewidiwch \frac{b}{c} am y yn x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-1+\frac{a+b}{b}
Lluoswch -\frac{c}{b} â \frac{b}{c}.
x=\frac{a}{b}
Adio \frac{a+b}{b} at -1\text{, }|b|\neq |a|.
x=\frac{a}{b},y=\frac{b}{c}
Mae’r system wedi’i datrys nawr.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}b&c\\-\frac{2ab}{\left(-a+b\right)\left(a+b\right)}&\frac{2ca}{\left(b-a\right)\left(b+a\right)}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2ac}{\left(b-a\right)\left(a+b\right)\left(b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}\right)}&-\frac{c}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\\-\frac{\frac{2ab}{\left(a-b\right)\left(a+b\right)}}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}&\frac{b}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}&\frac{a}{4b}-\frac{b}{4a}\\\frac{1}{2c}&\frac{\left(b-a\right)\left(a+b\right)}{4ac}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}\left(a+b\right)+\left(\frac{a}{4b}-\frac{b}{4a}\right)\times \frac{2a}{a+b}\\\frac{1}{2c}\left(a+b\right)+\frac{\left(b-a\right)\left(a+b\right)}{4ac}\times \frac{2a}{a+b}\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a}{b}\\\frac{b}{c}\end{matrix}\right)
Gwneud y symiau.
x=\frac{a}{b},y=\frac{b}{c}
Echdynnu yr elfennau matrics x a y.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)abx+\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)acy=\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(a+b\right),b\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+b\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=b\times \frac{2a}{a+b}
I wneud bx a \frac{2abx}{\left(a-b\right)\left(a+b\right)} yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) a holl dermau naill ochr yr ail â b.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b},\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}
Symleiddio.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\left(-\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}\right)x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Tynnwch \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b} o \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b} trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Adio \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} at -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}. Mae'r termau \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} a -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Adio \frac{2abcy}{\left(a-b\right)\left(a+b\right)} at -\frac{2bcay}{\left(b-a\right)\left(b+a\right)}.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{4ab^{2}}{\left(a-b\right)\left(a+b\right)}
Adio \frac{2ab}{a-b} at -\frac{2ba}{a+b}.
y=\frac{b}{c}
Rhannu’r ddwy ochr â \frac{4bca}{\left(a-b\right)\left(a+b\right)}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)c\times \frac{b}{c}=\frac{2a}{a+b}
Cyfnewidiwch \frac{b}{c} am y yn \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\frac{2ab}{\left(b-a\right)\left(a+b\right)}=\frac{2a}{a+b}
Lluoswch c\left(\left(b-a\right)^{-1}-\left(b+a\right)^{-1}\right) â \frac{b}{c}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax=-\frac{2a^{2}}{\left(b-a\right)\left(a+b\right)}
Tynnu \frac{2ab}{\left(b-a\right)\left(b+a\right)} o ddwy ochr yr hafaliad.
x=\frac{a}{b}
Rhannu’r ddwy ochr â a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right).
x=\frac{a}{b},y=\frac{b}{c}
Mae’r system wedi’i datrys nawr.