Datrys ar gyfer p (complex solution)
\left\{\begin{matrix}p=-\frac{W}{2-y}\text{, }&y\neq 2\\p\in \mathrm{C}\text{, }&W=0\text{ and }y=2\end{matrix}\right.
Datrys ar gyfer p
\left\{\begin{matrix}p=-\frac{W}{2-y}\text{, }&y\neq 2\\p\in \mathrm{R}\text{, }&W=0\text{ and }y=2\end{matrix}\right.
Datrys ar gyfer W
W=p\left(y-2\right)
Graff
Rhannu
Copïo i clipfwrdd
W=py-2p
Defnyddio’r briodwedd ddosbarthu i luosi p â y-2.
py-2p=W
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(y-2\right)p=W
Cyfuno pob term sy'n cynnwys p.
\frac{\left(y-2\right)p}{y-2}=\frac{W}{y-2}
Rhannu’r ddwy ochr â y-2.
p=\frac{W}{y-2}
Mae rhannu â y-2 yn dad-wneud lluosi â y-2.
W=py-2p
Defnyddio’r briodwedd ddosbarthu i luosi p â y-2.
py-2p=W
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(y-2\right)p=W
Cyfuno pob term sy'n cynnwys p.
\frac{\left(y-2\right)p}{y-2}=\frac{W}{y-2}
Rhannu’r ddwy ochr â y-2.
p=\frac{W}{y-2}
Mae rhannu â y-2 yn dad-wneud lluosi â y-2.
W=py-2p
Defnyddio’r briodwedd ddosbarthu i luosi p â y-2.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}