Datrys ar gyfer p_1
\left\{\begin{matrix}p_{1}=p_{2}-ϕ_{12}+\frac{iV_{12}}{v_{12}}\text{, }&v_{12}\neq 0\\p_{1}\in \mathrm{C}\text{, }&V_{12}=0\text{ and }v_{12}=0\end{matrix}\right.
Datrys ar gyfer V_12
V_{12}=-iv_{12}\left(p_{1}-p_{2}+ϕ_{12}\right)
Rhannu
Copïo i clipfwrdd
V_{12}=-iv_{12}ϕ_{12}-iv_{12}p_{1}+iv_{12}p_{2}
Defnyddio’r briodwedd ddosbarthu i luosi v_{12}\left(-i\right) â ϕ_{12}+p_{1}-p_{2}.
-iv_{12}ϕ_{12}-iv_{12}p_{1}+iv_{12}p_{2}=V_{12}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
-iv_{12}p_{1}+iv_{12}p_{2}=V_{12}-\left(-iv_{12}ϕ_{12}\right)
Tynnu -iv_{12}ϕ_{12} o'r ddwy ochr.
-iv_{12}p_{1}=V_{12}-\left(-iv_{12}ϕ_{12}\right)-iv_{12}p_{2}
Tynnu iv_{12}p_{2} o'r ddwy ochr.
-iv_{12}p_{1}=V_{12}+iv_{12}ϕ_{12}-iv_{12}p_{2}
Lluosi -1 a -i i gael i.
\left(-iv_{12}\right)p_{1}=V_{12}+iv_{12}ϕ_{12}-ip_{2}v_{12}
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(-iv_{12}\right)p_{1}}{-iv_{12}}=\frac{V_{12}+iv_{12}ϕ_{12}-ip_{2}v_{12}}{-iv_{12}}
Rhannu’r ddwy ochr â -iv_{12}.
p_{1}=\frac{V_{12}+iv_{12}ϕ_{12}-ip_{2}v_{12}}{-iv_{12}}
Mae rhannu â -iv_{12} yn dad-wneud lluosi â -iv_{12}.
p_{1}=p_{2}-ϕ_{12}+\frac{iV_{12}}{v_{12}}
Rhannwch V_{12}+iv_{12}ϕ_{12}-iv_{12}p_{2} â -iv_{12}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}