Datrys ar gyfer r (complex solution)
\left\{\begin{matrix}r=\left(\frac{V}{u}\right)^{2}\text{, }&u\neq 0\\r\in \mathrm{C}\text{, }&V=0\text{ and }u=0\end{matrix}\right.
Datrys ar gyfer r
\left\{\begin{matrix}r=\left(\frac{V}{u}\right)^{2}\text{, }&u\neq 0\\r\in \mathrm{R}\text{, }&V=0\text{ and }u=0\end{matrix}\right.
Datrys ar gyfer V (complex solution)
V=-\sqrt{r}u
V=\sqrt{r}u
Datrys ar gyfer V
\left\{\begin{matrix}V=\sqrt{r}u\text{; }V=-\sqrt{r}u\text{, }&r\geq 0\\V=0\text{, }&u=0\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
u^{2}r=V^{2}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{u^{2}r}{u^{2}}=\frac{V^{2}}{u^{2}}
Rhannu’r ddwy ochr â u^{2}.
r=\frac{V^{2}}{u^{2}}
Mae rhannu â u^{2} yn dad-wneud lluosi â u^{2}.
u^{2}r=V^{2}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{u^{2}r}{u^{2}}=\frac{V^{2}}{u^{2}}
Rhannu’r ddwy ochr â u^{2}.
r=\frac{V^{2}}{u^{2}}
Mae rhannu â u^{2} yn dad-wneud lluosi â u^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}