Neidio i'r prif gynnwys
Ffactor
Tick mark Image
Enrhifo
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

a+b=-5 ab=2\left(-3\right)=-6
Dylech ffactorio'r mynegiant drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r mynegiant ar ffurf 2x^{2}+ax+bx-3. I ddod o hyd i a a b, gosodwch system i'w datrys.
1,-6 2,-3
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn negatif, mae gan y rhif negatif werth absoliwt mwy na'r positif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -6.
1-6=-5 2-3=-1
Cyfrifo'r swm ar gyfer pob pâr.
a=-6 b=1
Yr ateb yw'r pâr sy'n rhoi'r swm -5.
\left(2x^{2}-6x\right)+\left(x-3\right)
Ailysgrifennwch 2x^{2}-5x-3 fel \left(2x^{2}-6x\right)+\left(x-3\right).
2x\left(x-3\right)+x-3
Ffactoriwch 2x allan yn 2x^{2}-6x.
\left(x-3\right)\left(2x+1\right)
Ffactoriwch y term cyffredin x-3 allan drwy ddefnyddio'r briodwedd ddosbarthol.
2x^{2}-5x-3=0
Gellir ffactorio polynomial cwadratig gan ddefnyddio’r trawsffurfiad ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), lle x_{1} a x_{2} yw datrysiadau’r hafaliad cwadratig ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Sgwâr -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Lluoswch -4 â 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Lluoswch -8 â -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Adio 25 at 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
Cymryd isradd 49.
x=\frac{5±7}{2\times 2}
Gwrthwyneb -5 yw 5.
x=\frac{5±7}{4}
Lluoswch 2 â 2.
x=\frac{12}{4}
Datryswch yr hafaliad x=\frac{5±7}{4} pan fydd ± yn plws. Adio 5 at 7.
x=3
Rhannwch 12 â 4.
x=-\frac{2}{4}
Datryswch yr hafaliad x=\frac{5±7}{4} pan fydd ± yn minws. Tynnu 7 o 5.
x=-\frac{1}{2}
Lleihau'r ffracsiwn \frac{-2}{4} i'r graddau lleiaf posib drwy dynnu a chanslo allan 2.
2x^{2}-5x-3=2\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
Ffactoriwch y mynegiad gwreiddiol gan ddefnyddio ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Cyfnewidiwch 3 am x_{1} a -\frac{1}{2} am x_{2}.
2x^{2}-5x-3=2\left(x-3\right)\left(x+\frac{1}{2}\right)
Symleiddiwch bob mynegiad ar y ffurf p-\left(-q\right) i p+q.
2x^{2}-5x-3=2\left(x-3\right)\times \frac{2x+1}{2}
Adio \frac{1}{2} at x drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
2x^{2}-5x-3=\left(x-3\right)\left(2x+1\right)
Diddymwch y ffactor cyffredin mwyaf 2 yn 2 a 2.