Datrys ar gyfer A (complex solution)
\left\{\begin{matrix}A=\frac{Ql}{K\Delta \theta }\text{, }&\theta \neq 0\text{ and }\Delta \neq 0\text{ and }K\neq 0\text{ and }l\neq 0\\A\in \mathrm{C}\text{, }&\left(\theta =0\text{ or }\Delta =0\text{ or }K=0\right)\text{ and }Q=0\text{ and }l\neq 0\end{matrix}\right.
Datrys ar gyfer K (complex solution)
\left\{\begin{matrix}K=\frac{Ql}{A\Delta \theta }\text{, }&\theta \neq 0\text{ and }\Delta \neq 0\text{ and }A\neq 0\text{ and }l\neq 0\\K\in \mathrm{C}\text{, }&\left(\theta =0\text{ or }\Delta =0\text{ or }A=0\right)\text{ and }Q=0\text{ and }l\neq 0\end{matrix}\right.
Datrys ar gyfer A
\left\{\begin{matrix}A=\frac{Ql}{K\Delta \theta }\text{, }&\theta \neq 0\text{ and }\Delta \neq 0\text{ and }K\neq 0\text{ and }l\neq 0\\A\in \mathrm{R}\text{, }&\left(\theta =0\text{ or }\Delta =0\text{ or }K=0\right)\text{ and }Q=0\text{ and }l\neq 0\end{matrix}\right.
Datrys ar gyfer K
\left\{\begin{matrix}K=\frac{Ql}{A\Delta \theta }\text{, }&\theta \neq 0\text{ and }\Delta \neq 0\text{ and }A\neq 0\text{ and }l\neq 0\\K\in \mathrm{R}\text{, }&\left(\theta =0\text{ or }\Delta =0\text{ or }A=0\right)\text{ and }Q=0\text{ and }l\neq 0\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
Ql=KA\Delta \theta
Lluoswch ddwy ochr yr hafaliad â l.
KA\Delta \theta =Ql
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
K\Delta \theta A=Ql
Mae'r hafaliad yn y ffurf safonol.
\frac{K\Delta \theta A}{K\Delta \theta }=\frac{Ql}{K\Delta \theta }
Rhannu’r ddwy ochr â K\Delta \theta .
A=\frac{Ql}{K\Delta \theta }
Mae rhannu â K\Delta \theta yn dad-wneud lluosi â K\Delta \theta .
Ql=KA\Delta \theta
Lluoswch ddwy ochr yr hafaliad â l.
KA\Delta \theta =Ql
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
A\Delta \theta K=Ql
Mae'r hafaliad yn y ffurf safonol.
\frac{A\Delta \theta K}{A\Delta \theta }=\frac{Ql}{A\Delta \theta }
Rhannu’r ddwy ochr â A\Delta \theta .
K=\frac{Ql}{A\Delta \theta }
Mae rhannu â A\Delta \theta yn dad-wneud lluosi â A\Delta \theta .
Ql=KA\Delta \theta
Lluoswch ddwy ochr yr hafaliad â l.
KA\Delta \theta =Ql
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
K\Delta \theta A=Ql
Mae'r hafaliad yn y ffurf safonol.
\frac{K\Delta \theta A}{K\Delta \theta }=\frac{Ql}{K\Delta \theta }
Rhannu’r ddwy ochr â K\Delta \theta .
A=\frac{Ql}{K\Delta \theta }
Mae rhannu â K\Delta \theta yn dad-wneud lluosi â K\Delta \theta .
Ql=KA\Delta \theta
Lluoswch ddwy ochr yr hafaliad â l.
KA\Delta \theta =Ql
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
A\Delta \theta K=Ql
Mae'r hafaliad yn y ffurf safonol.
\frac{A\Delta \theta K}{A\Delta \theta }=\frac{Ql}{A\Delta \theta }
Rhannu’r ddwy ochr â A\Delta \theta .
K=\frac{Ql}{A\Delta \theta }
Mae rhannu â A\Delta \theta yn dad-wneud lluosi â A\Delta \theta .
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}