Datrys ar gyfer c
\left\{\begin{matrix}c=\frac{E}{3\left(2\Delta +\lambda \right)}\text{, }&\lambda \neq -2\Delta \\c\in \mathrm{R}\text{, }&E=0\text{ and }\lambda =-2\Delta \end{matrix}\right.
Datrys ar gyfer E
E=3c\left(2\Delta +\lambda \right)
Rhannu
Copïo i clipfwrdd
E=3\lambda c+6\Delta c
Defnyddio’r briodwedd ddosbarthu i luosi 3 â \lambda c+2\Delta c.
3\lambda c+6\Delta c=E
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(3\lambda +6\Delta \right)c=E
Cyfuno pob term sy'n cynnwys c.
\left(6\Delta +3\lambda \right)c=E
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(6\Delta +3\lambda \right)c}{6\Delta +3\lambda }=\frac{E}{6\Delta +3\lambda }
Rhannu’r ddwy ochr â 3\lambda +6\Delta .
c=\frac{E}{6\Delta +3\lambda }
Mae rhannu â 3\lambda +6\Delta yn dad-wneud lluosi â 3\lambda +6\Delta .
c=\frac{E}{3\left(2\Delta +\lambda \right)}
Rhannwch E â 3\lambda +6\Delta .
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}