Datrys ar gyfer J (complex solution)
\left\{\begin{matrix}J=\frac{1600000000000000000E}{221cy}\text{, }&c\neq 0\text{ and }y\neq 0\text{ and }m\neq 0\\J\in \mathrm{C}\text{, }&\left(c=0\text{ or }y=0\right)\text{ and }E=0\text{ and }m\neq 0\end{matrix}\right.
Datrys ar gyfer E
E=\frac{221Jcy}{1600000000000000000}
m\neq 0
Datrys ar gyfer J
\left\{\begin{matrix}J=\frac{1600000000000000000E}{221cy}\text{, }&c\neq 0\text{ and }y\neq 0\text{ and }m\neq 0\\J\in \mathrm{R}\text{, }&\left(c=0\text{ or }y=0\right)\text{ and }E=0\text{ and }m\neq 0\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
E=\frac{6.63\times 10^{-26}J\times 5\times 300myc}{7.2\times 10^{-7}m}
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch -34 a 8 i gael -26.
E=\frac{5\times 6.63\times 300\times 10^{-26}Jcy}{7.2\times 10^{-7}}
Canslo m yn y rhifiadur a'r enwadur.
E=\frac{5\times 6.63\times 300Jcy}{7.2\times 10^{19}}
Er mwyn rhannu pwerau sy’n rhannu’r un sail, tynnwch esbonydd yr enwadur o esbonydd y rhifiadur.
E=\frac{33.15\times 300Jcy}{7.2\times 10^{19}}
Lluosi 5 a 6.63 i gael 33.15.
E=\frac{9945Jcy}{7.2\times 10^{19}}
Lluosi 33.15 a 300 i gael 9945.
E=\frac{9945Jcy}{7.2\times 10000000000000000000}
Cyfrifo 10 i bŵer 19 a chael 10000000000000000000.
E=\frac{9945Jcy}{72000000000000000000}
Lluosi 7.2 a 10000000000000000000 i gael 72000000000000000000.
E=\frac{221}{1600000000000000000}Jcy
Rhannu 9945Jcy â 72000000000000000000 i gael \frac{221}{1600000000000000000}Jcy.
\frac{221}{1600000000000000000}Jcy=E
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{221cy}{1600000000000000000}J=E
Mae'r hafaliad yn y ffurf safonol.
\frac{1600000000000000000\times \frac{221cy}{1600000000000000000}J}{221cy}=\frac{1600000000000000000E}{221cy}
Rhannu’r ddwy ochr â \frac{221}{1600000000000000000}cy.
J=\frac{1600000000000000000E}{221cy}
Mae rhannu â \frac{221}{1600000000000000000}cy yn dad-wneud lluosi â \frac{221}{1600000000000000000}cy.
E=\frac{6.63\times 10^{-26}J\times 5\times 300myc}{7.2\times 10^{-7}m}
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch -34 a 8 i gael -26.
E=\frac{5\times 6.63\times 300\times 10^{-26}Jcy}{7.2\times 10^{-7}}
Canslo m yn y rhifiadur a'r enwadur.
E=\frac{5\times 6.63\times 300Jcy}{7.2\times 10^{19}}
Er mwyn rhannu pwerau sy’n rhannu’r un sail, tynnwch esbonydd yr enwadur o esbonydd y rhifiadur.
E=\frac{33.15\times 300Jcy}{7.2\times 10^{19}}
Lluosi 5 a 6.63 i gael 33.15.
E=\frac{9945Jcy}{7.2\times 10^{19}}
Lluosi 33.15 a 300 i gael 9945.
E=\frac{9945Jcy}{7.2\times 10000000000000000000}
Cyfrifo 10 i bŵer 19 a chael 10000000000000000000.
E=\frac{9945Jcy}{72000000000000000000}
Lluosi 7.2 a 10000000000000000000 i gael 72000000000000000000.
E=\frac{221}{1600000000000000000}Jcy
Rhannu 9945Jcy â 72000000000000000000 i gael \frac{221}{1600000000000000000}Jcy.
E=\frac{6.63\times 10^{-26}J\times 5\times 300myc}{7.2\times 10^{-7}m}
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch -34 a 8 i gael -26.
E=\frac{5\times 6.63\times 300\times 10^{-26}Jcy}{7.2\times 10^{-7}}
Canslo m yn y rhifiadur a'r enwadur.
E=\frac{5\times 6.63\times 300Jcy}{7.2\times 10^{19}}
Er mwyn rhannu pwerau sy’n rhannu’r un sail, tynnwch esbonydd yr enwadur o esbonydd y rhifiadur.
E=\frac{33.15\times 300Jcy}{7.2\times 10^{19}}
Lluosi 5 a 6.63 i gael 33.15.
E=\frac{9945Jcy}{7.2\times 10^{19}}
Lluosi 33.15 a 300 i gael 9945.
E=\frac{9945Jcy}{7.2\times 10000000000000000000}
Cyfrifo 10 i bŵer 19 a chael 10000000000000000000.
E=\frac{9945Jcy}{72000000000000000000}
Lluosi 7.2 a 10000000000000000000 i gael 72000000000000000000.
E=\frac{221}{1600000000000000000}Jcy
Rhannu 9945Jcy â 72000000000000000000 i gael \frac{221}{1600000000000000000}Jcy.
\frac{221}{1600000000000000000}Jcy=E
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{221cy}{1600000000000000000}J=E
Mae'r hafaliad yn y ffurf safonol.
\frac{1600000000000000000\times \frac{221cy}{1600000000000000000}J}{221cy}=\frac{1600000000000000000E}{221cy}
Rhannu’r ddwy ochr â \frac{221}{1600000000000000000}cy.
J=\frac{1600000000000000000E}{221cy}
Mae rhannu â \frac{221}{1600000000000000000}cy yn dad-wneud lluosi â \frac{221}{1600000000000000000}cy.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}