Datrys ar gyfer A (complex solution)
\left\{\begin{matrix}A=\frac{C_{p}}{Th_{1}t\Delta }\text{, }&T\neq 0\text{ and }\Delta \neq 0\text{ and }t\neq 0\text{ and }h_{1}\neq 0\\A\in \mathrm{C}\text{, }&\left(T=0\text{ or }\Delta =0\text{ or }t=0\text{ or }h_{1}=0\right)\text{ and }C_{p}=0\end{matrix}\right.
Datrys ar gyfer A
\left\{\begin{matrix}A=\frac{C_{p}}{Th_{1}t\Delta }\text{, }&T\neq 0\text{ and }\Delta \neq 0\text{ and }t\neq 0\text{ and }h_{1}\neq 0\\A\in \mathrm{R}\text{, }&\left(T=0\text{ or }\Delta =0\text{ or }t=0\text{ or }h_{1}=0\right)\text{ and }C_{p}=0\end{matrix}\right.
Datrys ar gyfer C_p
C_{p}=ATh_{1}t\Delta
Rhannu
Copïo i clipfwrdd
h_{1}At\Delta T=C_{p}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
Th_{1}t\Delta A=C_{p}
Mae'r hafaliad yn y ffurf safonol.
\frac{Th_{1}t\Delta A}{Th_{1}t\Delta }=\frac{C_{p}}{Th_{1}t\Delta }
Rhannu’r ddwy ochr â h_{1}t\Delta T.
A=\frac{C_{p}}{Th_{1}t\Delta }
Mae rhannu â h_{1}t\Delta T yn dad-wneud lluosi â h_{1}t\Delta T.
h_{1}At\Delta T=C_{p}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
Th_{1}t\Delta A=C_{p}
Mae'r hafaliad yn y ffurf safonol.
\frac{Th_{1}t\Delta A}{Th_{1}t\Delta }=\frac{C_{p}}{Th_{1}t\Delta }
Rhannu’r ddwy ochr â h_{1}t\Delta T.
A=\frac{C_{p}}{Th_{1}t\Delta }
Mae rhannu â h_{1}t\Delta T yn dad-wneud lluosi â h_{1}t\Delta T.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}