Datrys ar gyfer S (complex solution)
\left\{\begin{matrix}S=-\frac{\left(t-4\right)\left(t-1\right)}{5ty}\text{, }&t\neq 0\text{ and }y\neq 0\\S\in \mathrm{C}\text{, }&\left(t=4\text{ or }t=1\right)\text{ and }y=0\end{matrix}\right.
Datrys ar gyfer S
\left\{\begin{matrix}S=-\frac{\left(t-4\right)\left(t-1\right)}{5ty}\text{, }&t\neq 0\text{ and }y\neq 0\\S\in \mathrm{R}\text{, }&\left(t=4\text{ or }t=1\right)\text{ and }y=0\end{matrix}\right.
Datrys ar gyfer t (complex solution)
t=\frac{\sqrt{9+25\left(Sy\right)^{2}-50Sy}-5Sy+5}{2}
t=\frac{-\sqrt{9+25\left(Sy\right)^{2}-50Sy}-5Sy+5}{2}
Datrys ar gyfer t
t=\frac{\sqrt{9+25\left(Sy\right)^{2}-50Sy}-5Sy+5}{2}
t=\frac{-\sqrt{9+25\left(Sy\right)^{2}-50Sy}-5Sy+5}{2}\text{, }S=0\text{ or }y\geq \frac{4|S|}{5S^{2}}+\frac{1}{S}\text{ or }y\leq -\frac{4|S|}{5S^{2}}+\frac{1}{S}
Graff
Rhannu
Copïo i clipfwrdd
-2t+5ySt=3t-4-t^{2}
Tynnu t^{2} o'r ddwy ochr.
5ySt=3t-4-t^{2}+2t
Ychwanegu 2t at y ddwy ochr.
5ySt=5t-4-t^{2}
Cyfuno 3t a 2t i gael 5t.
5tyS=-t^{2}+5t-4
Mae'r hafaliad yn y ffurf safonol.
\frac{5tyS}{5ty}=\frac{\left(1-t\right)\left(t-4\right)}{5ty}
Rhannu’r ddwy ochr â 5yt.
S=\frac{\left(1-t\right)\left(t-4\right)}{5ty}
Mae rhannu â 5yt yn dad-wneud lluosi â 5yt.
-2t+5ySt=3t-4-t^{2}
Tynnu t^{2} o'r ddwy ochr.
5ySt=3t-4-t^{2}+2t
Ychwanegu 2t at y ddwy ochr.
5ySt=5t-4-t^{2}
Cyfuno 3t a 2t i gael 5t.
5tyS=-t^{2}+5t-4
Mae'r hafaliad yn y ffurf safonol.
\frac{5tyS}{5ty}=\frac{\left(1-t\right)\left(t-4\right)}{5ty}
Rhannu’r ddwy ochr â 5yt.
S=\frac{\left(1-t\right)\left(t-4\right)}{5ty}
Mae rhannu â 5yt yn dad-wneud lluosi â 5yt.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}