Neidio i'r prif gynnwys
Datrys ar gyfer b (complex solution)
Tick mark Image
Datrys ar gyfer b
Tick mark Image
Datrys ar gyfer C
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

Cm=b\left(1+\frac{1}{m}\right)m
Lluoswch ddwy ochr yr hafaliad â m.
Cm=b\left(\frac{m}{m}+\frac{1}{m}\right)m
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 1 â \frac{m}{m}.
Cm=b\times \frac{m+1}{m}m
Gan fod gan \frac{m}{m} a \frac{1}{m} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
Cm=\frac{b\left(m+1\right)}{m}m
Mynegwch b\times \frac{m+1}{m} fel ffracsiwn unigol.
Cm=\frac{b\left(m+1\right)m}{m}
Mynegwch \frac{b\left(m+1\right)}{m}m fel ffracsiwn unigol.
Cm=b\left(m+1\right)
Canslo m yn y rhifiadur a'r enwadur.
Cm=bm+b
Defnyddio’r briodwedd ddosbarthu i luosi b â m+1.
bm+b=Cm
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(m+1\right)b=Cm
Cyfuno pob term sy'n cynnwys b.
\frac{\left(m+1\right)b}{m+1}=\frac{Cm}{m+1}
Rhannu’r ddwy ochr â m+1.
b=\frac{Cm}{m+1}
Mae rhannu â m+1 yn dad-wneud lluosi â m+1.
Cm=b\left(1+\frac{1}{m}\right)m
Lluoswch ddwy ochr yr hafaliad â m.
Cm=b\left(\frac{m}{m}+\frac{1}{m}\right)m
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 1 â \frac{m}{m}.
Cm=b\times \frac{m+1}{m}m
Gan fod gan \frac{m}{m} a \frac{1}{m} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
Cm=\frac{b\left(m+1\right)}{m}m
Mynegwch b\times \frac{m+1}{m} fel ffracsiwn unigol.
Cm=\frac{b\left(m+1\right)m}{m}
Mynegwch \frac{b\left(m+1\right)}{m}m fel ffracsiwn unigol.
Cm=b\left(m+1\right)
Canslo m yn y rhifiadur a'r enwadur.
Cm=bm+b
Defnyddio’r briodwedd ddosbarthu i luosi b â m+1.
bm+b=Cm
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(m+1\right)b=Cm
Cyfuno pob term sy'n cynnwys b.
\frac{\left(m+1\right)b}{m+1}=\frac{Cm}{m+1}
Rhannu’r ddwy ochr â m+1.
b=\frac{Cm}{m+1}
Mae rhannu â m+1 yn dad-wneud lluosi â m+1.