Neidio i'r prif gynnwys
Datrys ar gyfer A
Tick mark Image
Datrys ar gyfer P
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

A=P\left(1+\frac{1}{100}i\right)^{2}
Rhannu i â 100 i gael \frac{1}{100}i.
A=P\left(\frac{9999}{10000}+\frac{1}{50}i\right)
Cyfrifo 1+\frac{1}{100}i i bŵer 2 a chael \frac{9999}{10000}+\frac{1}{50}i.
A=P\left(1+\frac{1}{100}i\right)^{2}
Rhannu i â 100 i gael \frac{1}{100}i.
A=P\left(\frac{9999}{10000}+\frac{1}{50}i\right)
Cyfrifo 1+\frac{1}{100}i i bŵer 2 a chael \frac{9999}{10000}+\frac{1}{50}i.
P\left(\frac{9999}{10000}+\frac{1}{50}i\right)=A
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(\frac{9999}{10000}+\frac{1}{50}i\right)P=A
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(\frac{9999}{10000}+\frac{1}{50}i\right)P}{\frac{9999}{10000}+\frac{1}{50}i}=\frac{A}{\frac{9999}{10000}+\frac{1}{50}i}
Rhannu’r ddwy ochr â \frac{9999}{10000}+\frac{1}{50}i.
P=\frac{A}{\frac{9999}{10000}+\frac{1}{50}i}
Mae rhannu â \frac{9999}{10000}+\frac{1}{50}i yn dad-wneud lluosi â \frac{9999}{10000}+\frac{1}{50}i.
P=\left(\frac{99990000}{100020001}-\frac{2000000}{100020001}i\right)A
Rhannwch A â \frac{9999}{10000}+\frac{1}{50}i.