Datrys ar gyfer x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=3
Graff
Rhannu
Copïo i clipfwrdd
2x^{2}-3x=9
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
2x^{2}-3x-9=0
Tynnu 9 o'r ddwy ochr.
a+b=-3 ab=2\left(-9\right)=-18
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel 2x^{2}+ax+bx-9. I ddod o hyd i a a b, gosodwch system i'w datrys.
1,-18 2,-9 3,-6
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn negatif, mae gan y rhif negatif werth absoliwt mwy na'r positif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -18.
1-18=-17 2-9=-7 3-6=-3
Cyfrifo'r swm ar gyfer pob pâr.
a=-6 b=3
Yr ateb yw'r pâr sy'n rhoi'r swm -3.
\left(2x^{2}-6x\right)+\left(3x-9\right)
Ailysgrifennwch 2x^{2}-3x-9 fel \left(2x^{2}-6x\right)+\left(3x-9\right).
2x\left(x-3\right)+3\left(x-3\right)
Ni ddylech ffactorio 2x yn y cyntaf a 3 yn yr ail grŵp.
\left(x-3\right)\left(2x+3\right)
Ffactoriwch y term cyffredin x-3 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=3 x=-\frac{3}{2}
I ddod o hyd i atebion hafaliad, datryswch x-3=0 a 2x+3=0.
2x^{2}-3x=9
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
2x^{2}-3x-9=0
Tynnu 9 o'r ddwy ochr.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-9\right)}}{2\times 2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 2 am a, -3 am b, a -9 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-9\right)}}{2\times 2}
Sgwâr -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-9\right)}}{2\times 2}
Lluoswch -4 â 2.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\times 2}
Lluoswch -8 â -9.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\times 2}
Adio 9 at 72.
x=\frac{-\left(-3\right)±9}{2\times 2}
Cymryd isradd 81.
x=\frac{3±9}{2\times 2}
Gwrthwyneb -3 yw 3.
x=\frac{3±9}{4}
Lluoswch 2 â 2.
x=\frac{12}{4}
Datryswch yr hafaliad x=\frac{3±9}{4} pan fydd ± yn plws. Adio 3 at 9.
x=3
Rhannwch 12 â 4.
x=-\frac{6}{4}
Datryswch yr hafaliad x=\frac{3±9}{4} pan fydd ± yn minws. Tynnu 9 o 3.
x=-\frac{3}{2}
Lleihau'r ffracsiwn \frac{-6}{4} i'r graddau lleiaf posib drwy dynnu a chanslo allan 2.
x=3 x=-\frac{3}{2}
Mae’r hafaliad wedi’i ddatrys nawr.
2x^{2}-3x=9
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{2x^{2}-3x}{2}=\frac{9}{2}
Rhannu’r ddwy ochr â 2.
x^{2}-\frac{3}{2}x=\frac{9}{2}
Mae rhannu â 2 yn dad-wneud lluosi â 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{3}{4}\right)^{2}
Rhannwch -\frac{3}{2}, cyfernod y term x, â 2 i gael -\frac{3}{4}. Yna ychwanegwch sgwâr -\frac{3}{4} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{2}+\frac{9}{16}
Sgwariwch -\frac{3}{4} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{81}{16}
Adio \frac{9}{2} at \frac{9}{16} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
\left(x-\frac{3}{4}\right)^{2}=\frac{81}{16}
Ffactora x^{2}-\frac{3}{2}x+\frac{9}{16}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{3}{4}=\frac{9}{4} x-\frac{3}{4}=-\frac{9}{4}
Symleiddio.
x=3 x=-\frac{3}{2}
Adio \frac{3}{4} at ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}