Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

8x-\left(-4\right)=-4x^{2}
Tynnu -4 o'r ddwy ochr.
8x+4=-4x^{2}
Gwrthwyneb -4 yw 4.
8x+4+4x^{2}=0
Ychwanegu 4x^{2} at y ddwy ochr.
2x+1+x^{2}=0
Rhannu’r ddwy ochr â 4.
x^{2}+2x+1=0
Ad-drefnu'r polynomial i’w roi yn y ffurf safonol. Rhowch y termau yn y drefn o'r pŵer uchaf i'r isaf.
a+b=2 ab=1\times 1=1
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx+1. I ddod o hyd i a a b, gosodwch system i'w datrys.
a=1 b=1
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn bositif, mae a a b ill dau yn bositif. Yr unig fath o bâr yw ateb y system.
\left(x^{2}+x\right)+\left(x+1\right)
Ailysgrifennwch x^{2}+2x+1 fel \left(x^{2}+x\right)+\left(x+1\right).
x\left(x+1\right)+x+1
Ffactoriwch x allan yn x^{2}+x.
\left(x+1\right)\left(x+1\right)
Ffactoriwch y term cyffredin x+1 allan drwy ddefnyddio'r briodwedd ddosbarthol.
\left(x+1\right)^{2}
Ailysgrifennu fel sgwâr binomial.
x=-1
I ddod o hyd i ateb hafaliad, datryswch x+1=0.
8x-\left(-4\right)=-4x^{2}
Tynnu -4 o'r ddwy ochr.
8x+4=-4x^{2}
Gwrthwyneb -4 yw 4.
8x+4+4x^{2}=0
Ychwanegu 4x^{2} at y ddwy ochr.
4x^{2}+8x+4=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-8±\sqrt{8^{2}-4\times 4\times 4}}{2\times 4}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 4 am a, 8 am b, a 4 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 4\times 4}}{2\times 4}
Sgwâr 8.
x=\frac{-8±\sqrt{64-16\times 4}}{2\times 4}
Lluoswch -4 â 4.
x=\frac{-8±\sqrt{64-64}}{2\times 4}
Lluoswch -16 â 4.
x=\frac{-8±\sqrt{0}}{2\times 4}
Adio 64 at -64.
x=-\frac{8}{2\times 4}
Cymryd isradd 0.
x=-\frac{8}{8}
Lluoswch 2 â 4.
x=-1
Rhannwch -8 â 8.
8x+4x^{2}=-4
Ychwanegu 4x^{2} at y ddwy ochr.
4x^{2}+8x=-4
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
\frac{4x^{2}+8x}{4}=-\frac{4}{4}
Rhannu’r ddwy ochr â 4.
x^{2}+\frac{8}{4}x=-\frac{4}{4}
Mae rhannu â 4 yn dad-wneud lluosi â 4.
x^{2}+2x=-\frac{4}{4}
Rhannwch 8 â 4.
x^{2}+2x=-1
Rhannwch -4 â 4.
x^{2}+2x+1^{2}=-1+1^{2}
Rhannwch 2, cyfernod y term x, â 2 i gael 1. Yna ychwanegwch sgwâr 1 at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}+2x+1=-1+1
Sgwâr 1.
x^{2}+2x+1=0
Adio -1 at 1.
\left(x+1\right)^{2}=0
Ffactora x^{2}+2x+1. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
Cymrwch isradd dwy ochr yr hafaliad.
x+1=0 x+1=0
Symleiddio.
x=-1 x=-1
Tynnu 1 o ddwy ochr yr hafaliad.
x=-1
Mae’r hafaliad wedi’i ddatrys nawr. Mae’r datrysiadau yr un peth.