Datrys ar gyfer x
x=\sqrt{38}\approx 6.164414003
x=-\sqrt{38}\approx -6.164414003
Graff
Rhannu
Copïo i clipfwrdd
8x^{2}=313-9
Tynnu 9 o'r ddwy ochr.
8x^{2}=304
Tynnu 9 o 313 i gael 304.
x^{2}=\frac{304}{8}
Rhannu’r ddwy ochr â 8.
x^{2}=38
Rhannu 304 â 8 i gael 38.
x=\sqrt{38} x=-\sqrt{38}
Cymryd isradd dwy ochr yr hafaliad.
8x^{2}+9-313=0
Tynnu 313 o'r ddwy ochr.
8x^{2}-304=0
Tynnu 313 o 9 i gael -304.
x=\frac{0±\sqrt{0^{2}-4\times 8\left(-304\right)}}{2\times 8}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 8 am a, 0 am b, a -304 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 8\left(-304\right)}}{2\times 8}
Sgwâr 0.
x=\frac{0±\sqrt{-32\left(-304\right)}}{2\times 8}
Lluoswch -4 â 8.
x=\frac{0±\sqrt{9728}}{2\times 8}
Lluoswch -32 â -304.
x=\frac{0±16\sqrt{38}}{2\times 8}
Cymryd isradd 9728.
x=\frac{0±16\sqrt{38}}{16}
Lluoswch 2 â 8.
x=\sqrt{38}
Datryswch yr hafaliad x=\frac{0±16\sqrt{38}}{16} pan fydd ± yn plws.
x=-\sqrt{38}
Datryswch yr hafaliad x=\frac{0±16\sqrt{38}}{16} pan fydd ± yn minws.
x=\sqrt{38} x=-\sqrt{38}
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}