Datrys ar gyfer f
f=\frac{367}{60t^{2}}
t\neq 0
Datrys ar gyfer t (complex solution)
t=-\frac{\sqrt{5505}f^{-\frac{1}{2}}}{30}
t=\frac{\sqrt{5505}f^{-\frac{1}{2}}}{30}\text{, }f\neq 0
Datrys ar gyfer t
t=\frac{\sqrt{\frac{5505}{f}}}{30}
t=-\frac{\sqrt{\frac{5505}{f}}}{30}\text{, }f>0
Rhannu
Copïo i clipfwrdd
60ft^{2}=367
Adio 287 a 80 i gael 367.
60t^{2}f=367
Mae'r hafaliad yn y ffurf safonol.
\frac{60t^{2}f}{60t^{2}}=\frac{367}{60t^{2}}
Rhannu’r ddwy ochr â 60t^{2}.
f=\frac{367}{60t^{2}}
Mae rhannu â 60t^{2} yn dad-wneud lluosi â 60t^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}