Datrys ar gyfer y (complex solution)
\left\{\begin{matrix}y=\frac{5z}{3x^{2}}\text{, }&x\neq 0\\y\in \mathrm{C}\text{, }&z=0\text{ and }x=0\end{matrix}\right.
Datrys ar gyfer y
\left\{\begin{matrix}y=\frac{5z}{3x^{2}}\text{, }&x\neq 0\\y\in \mathrm{R}\text{, }&z=0\text{ and }x=0\end{matrix}\right.
Datrys ar gyfer x (complex solution)
\left\{\begin{matrix}x=-\frac{y^{-\frac{1}{2}}\sqrt{15z}}{3}\text{; }x=\frac{y^{-\frac{1}{2}}\sqrt{15z}}{3}\text{, }&y\neq 0\\x\in \mathrm{C}\text{, }&z=0\text{ and }y=0\end{matrix}\right.
Datrys ar gyfer x
\left\{\begin{matrix}x=\frac{\sqrt{\frac{15z}{y}}}{3}\text{; }x=-\frac{\sqrt{\frac{15z}{y}}}{3}\text{, }&\left(z\geq 0\text{ and }y>0\right)\text{ or }\left(z\leq 0\text{ and }y<0\right)\\x\in \mathrm{R}\text{, }&z=0\text{ and }y=0\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
\frac{3}{5}xxy=z
Rhannu 6x â 10 i gael \frac{3}{5}x.
\frac{3}{5}x^{2}y=z
Lluosi x a x i gael x^{2}.
\frac{3x^{2}}{5}y=z
Mae'r hafaliad yn y ffurf safonol.
\frac{5\times \frac{3x^{2}}{5}y}{3x^{2}}=\frac{5z}{3x^{2}}
Rhannu’r ddwy ochr â \frac{3}{5}x^{2}.
y=\frac{5z}{3x^{2}}
Mae rhannu â \frac{3}{5}x^{2} yn dad-wneud lluosi â \frac{3}{5}x^{2}.
\frac{3}{5}xxy=z
Rhannu 6x â 10 i gael \frac{3}{5}x.
\frac{3}{5}x^{2}y=z
Lluosi x a x i gael x^{2}.
\frac{3x^{2}}{5}y=z
Mae'r hafaliad yn y ffurf safonol.
\frac{5\times \frac{3x^{2}}{5}y}{3x^{2}}=\frac{5z}{3x^{2}}
Rhannu’r ddwy ochr â \frac{3}{5}x^{2}.
y=\frac{5z}{3x^{2}}
Mae rhannu â \frac{3}{5}x^{2} yn dad-wneud lluosi â \frac{3}{5}x^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}