Ffactor
x\left(x-1\right)\left(3x-1\right)\left(2x+1\right)
Enrhifo
x\left(x-1\right)\left(3x-1\right)\left(2x+1\right)
Graff
Rhannu
Copïo i clipfwrdd
x\left(6x^{3}-5x^{2}-2x+1\right)
Ffactora allan x.
\left(2x+1\right)\left(3x^{2}-4x+1\right)
Ystyriwch 6x^{3}-5x^{2}-2x+1. Yn ôl y Theorem Gwraidd Rhesymegol, mae gwreiddiau rhesymegol pob polynomial yn y ffurf \frac{p}{q}, lle mae p yn rhannu'r term cyson 1 ac mae q yn rhannu'r cyfernod arweiniol 6. Un gwraidd o'r fath yw -\frac{1}{2}. Ffactoriwch y polynomial drwy ei rannu â 2x+1.
a+b=-4 ab=3\times 1=3
Ystyriwch 3x^{2}-4x+1. Dylech ffactorio'r mynegiant drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r mynegiant ar ffurf 3x^{2}+ax+bx+1. I ddod o hyd i a a b, gosodwch system i'w datrys.
a=-3 b=-1
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn negatif, mae a a b ill dau yn negatif. Yr unig fath o bâr yw ateb y system.
\left(3x^{2}-3x\right)+\left(-x+1\right)
Ailysgrifennwch 3x^{2}-4x+1 fel \left(3x^{2}-3x\right)+\left(-x+1\right).
3x\left(x-1\right)-\left(x-1\right)
Ni ddylech ffactorio 3x yn y cyntaf a -1 yn yr ail grŵp.
\left(x-1\right)\left(3x-1\right)
Ffactoriwch y term cyffredin x-1 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x\left(2x+1\right)\left(x-1\right)\left(3x-1\right)
Ailysgrifennwch y mynegiad cyfan wedi'i ffactorio.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}