Datrys ar gyfer x
x = \frac{\sqrt{1044626969} + 4363}{21426} \approx 1.712110963
x=\frac{4363-\sqrt{1044626969}}{21426}\approx -1.304848758
Graff
Rhannu
Copïo i clipfwrdd
-32139x^{2}+13089x+71856=56
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
-32139x^{2}+13089x+71856-56=0
Tynnu 56 o'r ddwy ochr.
-32139x^{2}+13089x+71800=0
Tynnu 56 o 71856 i gael 71800.
x=\frac{-13089±\sqrt{13089^{2}-4\left(-32139\right)\times 71800}}{2\left(-32139\right)}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch -32139 am a, 13089 am b, a 71800 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13089±\sqrt{171321921-4\left(-32139\right)\times 71800}}{2\left(-32139\right)}
Sgwâr 13089.
x=\frac{-13089±\sqrt{171321921+128556\times 71800}}{2\left(-32139\right)}
Lluoswch -4 â -32139.
x=\frac{-13089±\sqrt{171321921+9230320800}}{2\left(-32139\right)}
Lluoswch 128556 â 71800.
x=\frac{-13089±\sqrt{9401642721}}{2\left(-32139\right)}
Adio 171321921 at 9230320800.
x=\frac{-13089±3\sqrt{1044626969}}{2\left(-32139\right)}
Cymryd isradd 9401642721.
x=\frac{-13089±3\sqrt{1044626969}}{-64278}
Lluoswch 2 â -32139.
x=\frac{3\sqrt{1044626969}-13089}{-64278}
Datryswch yr hafaliad x=\frac{-13089±3\sqrt{1044626969}}{-64278} pan fydd ± yn plws. Adio -13089 at 3\sqrt{1044626969}.
x=\frac{4363-\sqrt{1044626969}}{21426}
Rhannwch -13089+3\sqrt{1044626969} â -64278.
x=\frac{-3\sqrt{1044626969}-13089}{-64278}
Datryswch yr hafaliad x=\frac{-13089±3\sqrt{1044626969}}{-64278} pan fydd ± yn minws. Tynnu 3\sqrt{1044626969} o -13089.
x=\frac{\sqrt{1044626969}+4363}{21426}
Rhannwch -13089-3\sqrt{1044626969} â -64278.
x=\frac{4363-\sqrt{1044626969}}{21426} x=\frac{\sqrt{1044626969}+4363}{21426}
Mae’r hafaliad wedi’i ddatrys nawr.
-32139x^{2}+13089x+71856=56
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
-32139x^{2}+13089x=56-71856
Tynnu 71856 o'r ddwy ochr.
-32139x^{2}+13089x=-71800
Tynnu 71856 o 56 i gael -71800.
\frac{-32139x^{2}+13089x}{-32139}=-\frac{71800}{-32139}
Rhannu’r ddwy ochr â -32139.
x^{2}+\frac{13089}{-32139}x=-\frac{71800}{-32139}
Mae rhannu â -32139 yn dad-wneud lluosi â -32139.
x^{2}-\frac{4363}{10713}x=-\frac{71800}{-32139}
Lleihau'r ffracsiwn \frac{13089}{-32139} i'r graddau lleiaf posib drwy dynnu a chanslo allan 3.
x^{2}-\frac{4363}{10713}x=\frac{71800}{32139}
Rhannwch -71800 â -32139.
x^{2}-\frac{4363}{10713}x+\left(-\frac{4363}{21426}\right)^{2}=\frac{71800}{32139}+\left(-\frac{4363}{21426}\right)^{2}
Rhannwch -\frac{4363}{10713}, cyfernod y term x, â 2 i gael -\frac{4363}{21426}. Yna ychwanegwch sgwâr -\frac{4363}{21426} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-\frac{4363}{10713}x+\frac{19035769}{459073476}=\frac{71800}{32139}+\frac{19035769}{459073476}
Sgwariwch -\frac{4363}{21426} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}-\frac{4363}{10713}x+\frac{19035769}{459073476}=\frac{1044626969}{459073476}
Adio \frac{71800}{32139} at \frac{19035769}{459073476} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
\left(x-\frac{4363}{21426}\right)^{2}=\frac{1044626969}{459073476}
Ffactora x^{2}-\frac{4363}{10713}x+\frac{19035769}{459073476}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4363}{21426}\right)^{2}}=\sqrt{\frac{1044626969}{459073476}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{4363}{21426}=\frac{\sqrt{1044626969}}{21426} x-\frac{4363}{21426}=-\frac{\sqrt{1044626969}}{21426}
Symleiddio.
x=\frac{\sqrt{1044626969}+4363}{21426} x=\frac{4363-\sqrt{1044626969}}{21426}
Adio \frac{4363}{21426} at ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}