Datrys ar gyfer x
x=2\log_{1.05}\left(1.25\right)\approx 9.147071141
Datrys ar gyfer x (complex solution)
x=\frac{i\times 2\pi n_{1}}{\ln(1.05)}+2\log_{1.05}\left(1.25\right)
n_{1}\in \mathrm{Z}
Graff
Rhannu
Copïo i clipfwrdd
\frac{50000}{32000}=\left(1+0.05\right)^{x}
Rhannu’r ddwy ochr â 32000.
\frac{25}{16}=\left(1+0.05\right)^{x}
Lleihau'r ffracsiwn \frac{50000}{32000} i'r graddau lleiaf posib drwy dynnu a chanslo allan 2000.
\frac{25}{16}=1.05^{x}
Adio 1 a 0.05 i gael 1.05.
1.05^{x}=\frac{25}{16}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\log(1.05^{x})=\log(\frac{25}{16})
Cymryd logarithm dwy ochr yr hafaliad.
x\log(1.05)=\log(\frac{25}{16})
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
x=\frac{\log(\frac{25}{16})}{\log(1.05)}
Rhannu’r ddwy ochr â \log(1.05).
x=\log_{1.05}\left(\frac{25}{16}\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}