Datrys ar gyfer x
x=-\frac{9\sqrt{10}}{10}+1\approx -1.846049894
x=\frac{9\sqrt{10}}{10}+1\approx 3.846049894
Graff
Rhannu
Copïo i clipfwrdd
\frac{50\left(-x+1\right)^{2}}{50}=\frac{405}{50}
Rhannu’r ddwy ochr â 50.
\left(-x+1\right)^{2}=\frac{405}{50}
Mae rhannu â 50 yn dad-wneud lluosi â 50.
\left(-x+1\right)^{2}=\frac{81}{10}
Lleihau'r ffracsiwn \frac{405}{50} i'r graddau lleiaf posib drwy dynnu a chanslo allan 5.
-x+1=\frac{9\sqrt{10}}{10} -x+1=-\frac{9\sqrt{10}}{10}
Cymryd isradd dwy ochr yr hafaliad.
-x+1-1=\frac{9\sqrt{10}}{10}-1 -x+1-1=-\frac{9\sqrt{10}}{10}-1
Tynnu 1 o ddwy ochr yr hafaliad.
-x=\frac{9\sqrt{10}}{10}-1 -x=-\frac{9\sqrt{10}}{10}-1
Mae tynnu 1 o’i hun yn gadael 0.
-x=\frac{9\sqrt{10}}{10}-1
Tynnu 1 o \frac{9\sqrt{10}}{10}.
-x=-\frac{9\sqrt{10}}{10}-1
Tynnu 1 o -\frac{9\sqrt{10}}{10}.
\frac{-x}{-1}=\frac{\frac{9\sqrt{10}}{10}-1}{-1} \frac{-x}{-1}=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
Rhannu’r ddwy ochr â -1.
x=\frac{\frac{9\sqrt{10}}{10}-1}{-1} x=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
Mae rhannu â -1 yn dad-wneud lluosi â -1.
x=-\frac{9\sqrt{10}}{10}+1
Rhannwch \frac{9\sqrt{10}}{10}-1 â -1.
x=\frac{9\sqrt{10}}{10}+1
Rhannwch -\frac{9\sqrt{10}}{10}-1 â -1.
x=-\frac{9\sqrt{10}}{10}+1 x=\frac{9\sqrt{10}}{10}+1
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}